
Real-time usage in the
BeagleBoard.org community

Real Time Summit 2019 (Lyon)

Drew Fustini
BeagleBoard.org Foundation

drew@beagleboard.org
Twitter: @pdp7

Slides: https://github.com/pdp7/talks/blob/master/rt-summit-2019.pdf

http://twitter.com/pdp7
http://twitter.com/pdp7
https://github.com/pdp7/talks/blob/master/rt-summit-2019.pdf

● Open Source Hardware designer at OSH Park
● PCB manufacturing service in the USA
● drew@oshpark.com / Twitter: @oshpark

● Member of Board of Directors of
BeagleBoard.org Foundation

● drew@beagleboard.org

● Vice President of the Open Source Hardware
Association (OSHWA)

● serving as Vice President
● drew@pdp7.com

mailto:drew@oshpark.com
https://twitter.com/oshpark
mailto:drew@pdp7.com

● Open Source Hardware computing for
Makers, Educators & Professionals

● Developed by BeagleBoard.org Foundation
and BeagleBoard.org Community

● Manufacturers: element14, GHI, Seeed

http://beagleboard.org/about
http://beagleboard.org/Community/Forums
http://beagleboard.org/logo
https://www.adafruit.com/product/1996
https://www.ghielectronics.com/news#23477
http://beagleboard.org/green
https://beagleboard.org/
http://beagleboard.org/

BeagleBoard.org released the first
BeagleBoard, an affordable, open
hardware ARM computer in 2008

http://beagleboard.org/

Maker focused, Altoids tin sized
BeagleBone introduced in 2011

http://beagleboard.org/

More affordable, more powerful
BeagleBone Black in 2013

http://beagleboard.org/

BeagleBone Black

Open Source Hardware
BeagleBone derivatives

http://beagleboard.org/boards
http://beagleboard.org/boards
http://beagleboard.org/

BeagleBone Blue: complete Linux robotics
controller. 4 layer PCB designed in EAGLE.

https://beagleboard.org/blue
https://github.com/beagleboard/beaglebone-blue/

BeagleBoard.org PocketBeagle

http://beagleboard.org/pocket
http://beagleboard.org/pocket

Linux Foundation training

● PocketBeagle and TechLab board

https://e-ale.org/

BeagleBone AI: The Fast Track for
Embedded Machine Learning

https://beagleboard.org/ai

BeagleBone AI: The Fast Track for
Embedded Machine Learning

https://beagleboard.org/ai
https://github.com/beagleboard/beaglebone-ai/wiki/Quick-Start-Guide

“TI C66x digital-signal-processor (DSP) cores and embedded-vision-
engine (EVE) cores supported through an optimized TIDL machine
learning OpenCL API with pre-installed tools. Focused on everyday
automation in industrial, commercial and home applications.”

Feature highlights:
- BeagleBone Black mechanical and header compatibility
- TI AM5729 SoC: 2x A15 CPU, 2x C66 DSP, 4x M4 MCU, 4x PRU and
4x EVE
- 1GB RAM and 16GB on-board eMMC flash with high-speed interface
- USB type-C for power and superspeed dual-role controller; and USB
type-A host
- Gigabit Ethernet, 2.4/5GHz WiFi, and Bluetooth
- microHDMI
- Zero-download out-of-box software experience

BeagleBone AI

https://beagleboard.org/ai

TI Sitara AM3358
(BeagleBone White/Green/Blue,

PocketBeagle)

● Kumar Abhishek created
BeagleLogic for GSoC 2014

● BeagleLogic turns BeagleBone
into Logic Analyzer

● 14-channel, 100Msps
● Web browser user interface
● Video of final presentation

http://theembeddedkitchen.net/
https://www.youtube.com/watch?v=CDbEAq33vdA
https://github.com/abhishek-kakkar/BeagleLogic/wiki
https://github.com/abhishek-kakkar/BeagleLogic/wiki

BeagleLogic - Logic Zero to One in 2 minutes

https://www.youtube.com/watch?v=E6MWDyBO9Nc&list=PLB51hk_14f3I1zD_SYADRLsWeUEnQzmhB&index=1
https://github.com/abhishek-kakkar/BeagleLogic/wiki
https://www.youtube.com/watch?v=E6MWDyBO9Nc&list=PLB51hk_14f3I1zD_SYADRLsWeUEnQzmhB&index=1

Source: https://hackaday.io/project/4395-beaglelogic

https://hackaday.io/project/4395-beaglelogic
https://github.com/abhishek-kakkar/BeagleLogic/wiki
https://hackaday.io/project/4395-beaglelogic
https://hackaday.io/project/4395-beaglelogic

`

https://github.com/abhishek-kakkar/BeagleLogic/wiki
https://www.youtube.com/watch?v=nxXwN-mIFfA

https://github.com/abhishek-kakkar/BeagleLogic/wiki
https://www.youtube.com/watch?v=nxXwN-mIFfA

BeaglePilot

● Víctor Mayoral Vilches for
GSoC 2014

● Linux-based autopilot for flying
robots based on BeagleBone

● Ported ArduPilot to Linux
● ROS integration
● Videos: Introduction & Final report
● GitHub: BeaglePilot

http://elinux.org/BeagleBoard/GSoC/BeaglePilot
https://github.com/vmayoral
http://elinux.org/BeagleBoard/GSoC/BeaglePilot
https://www.youtube.com/watch?v=-giV6Xr8RtY
https://www.youtube.com/watch?v=irROS-2n0mU
https://github.com/BeaglePilot/beaglepilot

BeaglePilot

http://elinux.org/BeagleBoard/GSoC/BeaglePilot

BeaglePilot

● Towards an Open Source Linux autopilot for
drones

“Linux can perfectly be used to meet the real-time
requirements needed by an autopilot requiring only
about 25% of the processor in BeagleBone Black.”

http://elinux.org/BeagleBoard/GSoC/BeaglePilot
https://github.com/BeaglePilot/beaglepilot/blob/master/files/APM_Linux.pdf?raw=true
https://github.com/BeaglePilot/beaglepilot/blob/master/files/APM_Linux.pdf?raw=true

MachineKit.io (fork of LinuxCNC)

MachineKit

● Machinekit will run on either Xenomai or
PREEMPT_RT

● Current image for BeagleBone has kernel
4.19.72-bone-rt-r39

● “And the winner is: RT-PREEMPT”*
– http://blog.machinekit.io/2015/11/and-winner-is-rt-pr

eempt.html

https://elinux.org/Beagleboard:BeagleBoneBlack_Debian#BBW.2FBBB_.28All_Revs.29_Machinekit
http://blog.machinekit.io/2015/11/and-winner-is-rt-preempt.html
http://blog.machinekit.io/2015/11/and-winner-is-rt-preempt.html
http://blog.machinekit.io/2015/11/and-winner-is-rt-preempt.html

MachineKit

● Charles Steinkuehler implemented the
LinuxCNC/MachineKit HAL on the BeagleBone

● The servo thread (motion planning) typically
runs at 1 KHz (1 ms) on the ARM cores

● "Bit twiddling" (eg: step pulse generation)
typically runs much faster, with a 3-5 uS thread
period on the PRU cores

UniBone: PDP-11 card emulator

● http://retrocmp.com/projects/unibone
Jorge Hoppe

UniBone: PDP-11 card emulator

● Emulate PDP-11 disk controllers and disk
● Devices in separate pthreads. To verify these devices I let the

PDP-11 CPU exercise them with DECs "XXDP" diagnostics.
● The emulator-threads must have realtime priority

(SCHED_FIFO), else some diagnostics complain about violated
timing constraints (obviously when other threads get preempted)

● When the PDP-11 CPU does an register access via UNIBUS to
PRU to my devices, best case a delay of about 50 microseconds
until the Linux threads get activated (via PRU interrupt)

● If not SCHED_FIFO, that delay can be 10-20 milliseconds.

Bela one-handed bass

Bela one-handed bass

Bela: real-time deadlines

● Xenomai 3.0.7 with 3.1 in current testing
● Kernel 4.4.113-ti-xenomai-r149, current testing 4.14.108-ti-xenomai-

r122 (i-pipe bug just fixed)
● 2 or 4 samples per block. Sampling rate is 44100 Hz.
● The audio callback is called every 2 or 4 samples
● Periodic task that needs to wake up every 45us or 90us.
● If the thread wakeup latency is larger than that value, then the

thread will not wake up on time to even run when it's meant
● If the thread takes a significant amount of that time to wake up then

it will have very little CPU time to actually perform the computation it
has to perform

Bela: Xenomai vs. PREEMPT_RT

● Giulio Moro from the Bela team has done some specific latency measurements
– This was with 4.4 PREEMPT_RT versus 4.4 Xenomai co-kernel (i-pipe)
– Xenomai i-pipe bug in 4.14 prevented moving to newer, fix found last week
– Bela will soon be able to compare between 4.14 PREEMPT_RT and 4.14 Xenomai (i-pipe)

● “the thread wakeup latency is smaller on average and worst case for xenomai vs
preempt rt, which means fewer time spent waiting for the audio thread to start
executing and more time spent processing audio.”

● “average latency is as low or lower on RT, but that the ceiling is lower on Xenomai
and therefore that is more dependable for real-time audio applications”

● “doubt RT would work reliably at 2 or 4 samples. That would mean having a
repeatable thread wakeup latency below 45 and 90us respectively. While I think
RT can achieve the latter fairly often, I don't think it can hit the former not even
half of the time.”

Questions for PREEMPT_RT:

● What are the expectations could developers have for
latency deadlines?
– 100 uS? 50 uS? 10 uS?
– Thread wakeup latency?
– What are best practices for measuring their use case?

● Reasons to switch from Xenomai to straight RT?
● What PREEMPT_RT is new enough to see improvements?

– 4.14? 4.19? 5.x?
● 1GHz Cortex A8 versus dual 1.5GHz Cortext A15

(BeagleBone AI)?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

