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Background:
SoC-FPGAs platforms

Hardware-programmable platforms for embedded applications



SoC-FPGAs platforms for embedded systems

e Traditional SoCs platforms typically includes one or more GP
cores clusters, a memory controller, and a set of peripherals:
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SoC-FPGAs platforms for embedded systems

e SoC-FPGAs platforms includes an FPGA fabric that can be used
to extend the system with custom HW-accelerators.
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SoC-FPGAs platforms for embedded systems

e With dynamic partial reconfiguration (DPR) it is possible to
dynamically swap the set of HW-accelerators at run-time.
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Why FPGA-based HW acceleration for real-time systems?

Pros

Very predictable behavior. It is possible to explicitly control
the HW-accelerators at clock-level;

High-performance on SIMD / parallel operations with limited
energy consumption;

Bus and memory contention can be explicitly controlled at
system level using custom arbiters and bandwidth shapers.




Why FPGA-based HW acceleration for real-time systems?

Pros

Cons

Very predictable behavior. It is possible to explicitly control
the HW-accelerators at clock-level;

High-performance on SIMD / parallel operations with limited
energy consumption;

Bus and memory contention can be explicitly controlled at
system level using custom arbiters and bandwidth shapers.

Developing HW-accelerators for FPGAs is way more time
consuming than developing software:

o Even modern tools like high-level synthesis are not so
straightforward to use;

o Less libraries and development stacks are available
with respect to other platforms (e.g., GPUs).




DMA / bus mastering accelerators

e High-performances HW-accelerators implement bus mastering /
DMA to directly access data in the system memory;

e Let’s consider HW accelerators performing the same computational
activity (e.g. processing a frame) at each run (HW-tasks).
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FPGA-based HW acceleration for real-time systems

e Many real-time systems use periodic or sporadic tasks:
o Placing HW-accelerators statically may be inefficient;

o FPGA’s logic resources may IDLE most of the time resulting in
low utilization.
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FPGA-based HW acceleration for real-time systems

e With DPR it is possible to reconfigure only a portion of the FPGA
while the remainder of the fabric continues to operate...

o What if we leverage DPR to reconfigure the HW-tasks at
run-time only when needed?

HW-task HW-task
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Leveraging DPR for real-time systems

e Both tasks A and B are released and the slot is reconfigured for
HW-task A utilized by task A

Task A ‘ ‘
Task B ‘
Reconfigurations
RCFG Free

FPGA fabric
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Leveraging DPR for real-time systems

e Reconfiguration of HW-task A is completed and task A can
continue.
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Leveraging DPR for real-time systems

e Task A completes and the slot is reconfigured again for HW-task B
required by task B.
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Reconfigurations
RCFG Free
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Leveraging DPR for real-time systems

e Reconfiguration of HW-task B is completed and task B can
continue

| |
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Leveraging DPR for real-time systems

e And the cycle continues...

Task A

Task B

Reconfigurations

HW-tasks
A/B

Free

FPGA fabric
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FPGA reconfiguration rate: the trend

e «lNell, this looks nice in theory but on real-world FPGA platforms
the reconfiguration is not fast enough for this»
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FPGA reconfiguration rate: the trend

e «lNell, this looks nice in theory but on real-world FPGA platforms
the reconfiguration is not fast enough for this»

o Let’s look at the reconfiguration throughput in the last years:
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Leveraging DPR for real-time systems

e DPR a new scheduling dimension!

O

Multiple HW-tasks can utilize the same logic resources in
time-sharing;
Similar to multitasking but in the FPGA area domain;

Sort of FPGA “virtualization” since the FPGA can host more

HW-tasks that what statically possible

Image
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However, SoC FPGAs are complex platforms!

e So far so good, but in practice things are a bit more complex for
real-world systems:

e How to schedule reconfiguration and LEncryption | ?
acceleration request in order to achieve Fash ™ Slot 1
bounded response times? function |

e How to manage bus and memory Pooling Image
contention ensuring safe and predictable il TN
hardware accelerators behaviour? I ! [

Interconnect

e How to efficiently partition the FPGA fabric so | S3

to avoid wasting time and resources? - S2 Ty
S71 | 4%»
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The FRED framework

A framework for leveraging dynamic partial reconfiguration and
recurrent execution to predictably “virtualize” the FPGA fabric
guaranteeing bounded delays by design.




Overview

e FRED is a combination of several tools to tackle these issues:
o Platform model + real-time analysis and runtime on Linux;
o Bus monitors and bandwidth shapers;
o Automated FPGA fabric floorplanning;

Floorplanner

Analyzer Bus synthesizer

Runtime Bus manager
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Overview

e This talk will focus on:

o | Platform model and runtime support on Linux;

Analyzer

Runtime
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FRED runtime: platform model

e FRED'’s runtime platform model considers a system comprising:
One (or more) GP cores;
A dynamically reconfigurable FPGA fabric;
A shared memory;
An FPGA reconfiguration DMA engine.
m One reconfiguration at a time.

O O O O

Core 0 e CoreN || i FPGA _
fabric
LL Cache
Interconnects / mem. controller <ﬁ> RCFG |---
Memory
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FRED runtime: platform model

e On top of this, two kinds of computational activities:
o SW-tasks: periodic/sporadic task;
o HW-tasks: instances of hardware accelerators.

Fixed Priority Non-preemptive
@ scheduling @ execution
Core 0 - | CGoreN || FPGA
fabric
LL Cache
Interconnects / mem. controller ¢> RCFG
Memory o




FRED runtime: platform model

e Each job of a SW-task can call one (or more) HW-task to
accelerate its execution:

o The HW-task(s) will be reconfigured on the FPGA fabric.
o Data are exchanged through shared memory buffers;

Memory
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FRED runtime: FPGA patrtitioning

e FRED uses a slotted approach for FPGA:
o The FPGA is divided into partitions;

PO

P1

FPGA Static region
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FRED runtime: FPGA patrtitioning

e FRED uses a slotted approach for FPGA:
o The FPGA is divided into partitions;
o Each partitions further is divided into slots of equal sizes;
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FRED runtime: FPGA patrtitioning

e FRED uses a slotted approach for FPGA:
o The FPGA is divided into partitions;
o Each partitions further is divided into slots of equal sizes;
o HW-tasks are associated to a single partition (affinity).
m Can be reconfigured in any slot of the partition.
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__________________________________________________

Static region
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FRED runtime: HW-tasks scheduling

e How to schedule concurrent acceleration requests avoiding
unbounded delays?

o Reconfigurations must be serialized;
o More HW-tasks than available slots.

_________________________________________________

Static region

FPGA
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FRED runtime: HW-tasks scheduling

e FRED uses a custom scheduling infrastructure based on a
multi-level queue structure:

o One queue for each partition (FIFO policy);
o Single queue for reconfiguration DMA.
m Ordered by request timestamp (ticket-based).
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FRED runtime: HW-tasks scheduling

e This scheduling infrastructure has been designed for predictability!

o Analytical upper-bounds on the delay incurred by SW-tasks when
requesting the execution of HW-tasks.

Bounded delay!

Memory

e A. Biondi, A. Balsini, M. Pagani, E. Rossi, M. Marinoni, and G. Buttazzo, “A Framework for
Supporting Real-Time Applications on Dynamic Reconfigurable FPGAs”, Proc. of the IEEE
Real-Time Systems Symposium (RTSS 2016)

e M. Pagani, M. Marinoni, A. Biondi, A. Balsini, and G. Buttazzo, “Towards Real-Time Operating
Systems for Heterogeneous Reconfigurable Platforms”, Proc. of the 12th Annual Workshop on

Operating Systems Platforms for Embedded Real-Time Applications (OSPERT16)
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FRED runtime: life of a SW-task

e Each SW-task start like a regular task performing whatever kind of
software computation.

sw_task body (void)
{
< first chunk ><<:]

fred accel (hw_task) ;

< second chunk >

GP core

FPGA slot

First chunk
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FRED runtime: life of a SW-task

e Then, it performs an acceleration request calling a HW-task and

suspend.
sw_task body (void)
{
< first chunk >
fred_accel(hw_task);<:]
< second chunk >
}
GP core
FPGA slot

First chunk
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FRED runtime: life of a SW-task

e After a contention phase (shared resources (area) and
reconfiguration interface) the HW-task is configured on the FPGA

sw_task body (void)
{
< first chunk >

fred_accel(hw_task);<:]

< second chunk >

GP core

FPGA slot |—|

First chunk Contention RCFG
: delay : :

34



FRED runtime: life of a SW-task

e And can start its computing phase.

sw_task body (void)
{

< first chunk >

fred_accel(hw_task);<:]

< second chunk >

GP core

FPGA slot

. |
- RCFG | HW-task exec.

First chunk Contention
delay
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FRED runtime: life of a SW-task

e Once the HW-task finishes, the Sw-task unblocks and can
continue its software part

sw_task body (void)
{
< first chunk >

fred accel (hw_task) ;

< second chunk ><:I

GP core

FPGA slot

; ; - :
First chunk @ Contention | RCFG | HW-task exec. = Second
: delay . chunk
: ' : 36



FRED on Linux

Implementing FRED on a feature-rich operating system




FRED on Linux: reference platforms

e The Linux implementation of FRED is based on the Xilinx’s
MPSoCs as the reference platforms:

o A cluster of ARMv7 or v8 GP cores;

o Reconfigurable FPGA fabric;
o built-in reconfiguration DMA (DevC)

PS (processing system) PL (FPGA)
ARM Cores
______________________ qrensseeneee]
|
DevC Slot 0 | Slot 1
DRAM
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FRED on Linux: reference platforms

e The Linux implementation of FRED is based on the Xilinx’s
MPSoCs as the reference platforms:

o A cluster of ARMv7 or v8 GP cores;

o Reconfigurable FPGA fabric;
o built-in reconfiguration DMA (DevC)

PS (processing system) PL (FPGA)
ARM Cores
______________________ Jrenmeeenee]
|
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FRED on Linux: FPGA support design

e Each slot must be able to accommodate any HW-task belonging to
its partition:

e [t is necessary to define a common interface:
o AXI-MM master for accessing DRAM,;
o AXI-MM lite slave for control and up to 8 pointer registers;
o Done signal to notify the ARM cores through interrupt;

: AXI S INT AXIM
Synth. : Regs
tool HW-task
implementation
Interface :;
specification
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FRED on Linux: FPGA support design

e Each slot is also associated to a decoupler (Xilinx IP) to suppress
glitches during partial reconfiguration;

o Controlled through AXI slave interface (single reg).

PL (FPGA)
1
| |
: AXI S :
| |
] mem = 1 |
(- | 1
: : AXI S INT AXI M : :
: E Regs ' Reconfig. |
! I region J
L Hardware : J :
I : Accelerator . I
L : :
[ | 1
| |

_______________________________
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FRED on Linux: FPGA support design

APU

=
l (ARM Cores)

Central interconnect

PS AXI GP master ports

AXI S INT | AXIM
Regs

HW-task

—p DDR Controller
PL to Memory

interconnect PS

PS AXI HP slave ports PL

(FPGA)

Regs

1
1
1
|
1
AXIS | INT | AXIM |
|
1
1
1
|
1
1

1
1
| HW-task
1
1
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FRED on Linux: FPGA support design

> —p DDR Controller
l APU t
(ARM Cores)
Central interconnect PL to Memory PS
interconnect
PS AXI GP master ports PS AXI HP slave ports PL
l (FPGA)
AXI]
‘Interconnect

AXI S INT | AXIM
Regs

AXI S INT | AXIM
Regs

HW-task HW-task

Slot 0 Slot N 43




FRED on Linux: FPGA support design

> —p DDR Controller
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FRED on Linux: FPGA support design

>| «—> DDR Controller
l APU t
(ARM Cores)
Central interconnect PL to Memory PS
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l (FPGA)
[
[
AXI] AXI
. Concat
Interconnect Interconnects

i

AXI S INT | AXIM AXI S INT | AXIM

HW-task HW-task

Slot 0 Slot N 45




FRED on Linux: challenges

e How to implement FRED’s shared memory buffers?
o Linux uses virtual memory!
m SW-task (processes/threads) uses virtual addresses;
m HW-tasks, like other HW devices, use physical addresses;
m How to handle cache coherence?

e How to Implement the FRED’s scheduling policy?

o Who is in charge of receiving and handling acceleration
requests?

e How to control hardware resources?

o HW-tasks modules;
o Reconfiguration DMA and decouplers.
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FRED on Linux: design keypoints

e FRED on Linux (FredLinux) had been implemented, as much as
possible, in user-space to improve maintainability and safety:

o User-space server to handle and schedule acceleration requests;
o Minimal kernel support.

e Zero-copy design for shared buffers to avoid unnecessary copy
operations overhead and related BUS/memory traffic;

o Linux DMA layer provides functions for allocating and mapping
large coherent memory buffers (using CMA).

e Modular design to allow reusability and future extensions:

o Core mechanisms are independent from the platform and hardware
specific support.
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FRED on Linux; software architecture overview

e The central component of FREDLinux is a user-space server
process named FRED server:

o Receives and manages acceleration request from SW-tasks.

------------------- > Fred server

User

kernel
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FRED on Linux; software architecture overview

e The central component of FREDLinux is a user-space server
process named FRED server:

o Receives and manages acceleration request from SW-tasks.

o Relies upon two custom kernel modules, and the UIO
framework, for low-level operations.

------------------- > Fred server

User

kernel

DEVCFG driver

Buffers allocator module UIO Framework
module
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FRED on Linux: buffers allocator module

e The purpose of the buffer allocator module is to:
o Allocate physically contiguous, uncached, memory buffers;

o Provide the means by which such buffers can be accessed
efficiently from user space by SW-tasks.

Memory
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FRED on Linux: buffers allocator module

e \When loaded, the buffer allocator module instantiates a new
character device named fred buffctl.

o Buffers are allocated during the Fred server initialization
according to two design description files.

o Each allocation request is performed by an ioctl () syscall:

Design
description >
files

Fred server

4

lioctl()

User

[ /dev/fred/fred buffctl }
kernel -

Buffers allocator module
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FRED on Linux: buffers allocator module

e On the kernel side, the buffer allocator module:
o Creates a new character device named buf f<N>;

o Allocates a new contiguous memory buffer, associated with the
buf £<N> device, using the dma alloc coherent () function of
the DMA layer.

Design
description >
files

Fred server

4

lioctl()

User g )
/dev/fred/buff X

/dev/fred/fred buffctl }

J

kernel

Shared mem buff <t:] Buffers allocator module
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FRED on Linux: buffers allocator module

e The buff<N> char devices implement the mmap () method using the
dma common mmap () function.

SW-task virtual Physical
addr. space addr. space

Shared mem buff

~

/dev/fred/buff X

_/
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FRED on Linux: buffers allocator module

e The buff<N> char devices implement the mmap () method using the
dma common mmap () function.

e \When a SW-task calls (from userspace) the mmap () on the char
device the buffer gets mapped into its virtual memory space.

SW-task virtual Physical
addr. space addr. space

Shared mem buff

~

/dev/fred/buff X

_/

mmap ()
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FRED on Linux: buffers allocator module

e Once the buffer is mapped, it can be read and write data without any
overhead. No copy or flush are needed.

SW-task virtual Physical
addr. space addr. space

Shared mem buff

~

/dev/fred/buff X

_/
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FRED on Linux: reconfiguration module

e Xilinx’s original reconfiguration driver (DevC) was designed to be
safe and easy to use, not for efficiency:

e For each reconfiguration:
o Allocates a new contiguous memory buffer;
o Copies the whole bitstream from userspace to kernel;
o Busy wait until completion.

e Unsuitable for the intensive use of partial reconfiguration required
by FRED!

DRAM

> DevC [ >

hocoooooooococonooooocoodiococcooooooo =

PL (FPGA)
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FRED on Linux: reconfiguration module

e To overcome those issue the DevC driver has been modified:

o Preload all the bitstreams (HW-tasks images) into set of
physically contiguous buffers.

. /\
Physical addr. ~—
mem
mapped Bits.
< Fred server REEEEEE 0 cand
v

s

kernel J

p
User . ) - ]
/dev/xdevcfg mod —————{/dev/fred/buff_x
I [

DEVCFG driver Bit mem buffs
module
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FRED on Linux: reconfiguration module

e Now the reconfiguration can also be initiated by an ioct1 () call
passing, as argument, a reference to the buffer;

o write () method untouched for legacy compatibility.

Physical addr.

Fred server

ioctl ()

| f
User . ) - ]
/dev/xdevcfg mod —————{/dev/fred/buff_x
I [

s

kernel )

DEVCFG driver Bit mem buffs
module
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FRED on Linux: reconfiguration module

e To avoid busy-waits and allow I/O multiplexing, the driver has been
enhanced with the pol1l () method.

o The ioctl () returns immediately after the reconfiguration has
been initiated;

o Once reconfiguration is complete char device fd becomes ready.

User

Physical addr.

Bits.

Y

Fred server

s

kernel

s

/dev/xdevcfg mod

DEVCFG driver
module

Bit mem buff
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FRED on Linux: server internals

e FRED Server is organized as an event-driven system:
o Organized as a state machine driven by an event loop;
m Monitors the file descriptors using epoll () or poll ();
m Sleep until an event occurs.
o The HW-tasks scheduler is the core component;

Fred server
Event
IPC Scheduler
loop
devctg Buffers Slots Decs
ctrl ctrl ctrl ctrl

)

User . =
1:“‘T“{ /dev/xdevcfg mod }_{ /dev/fred/buffN /dev/fred/buffctl}{/dev/uioN
erne —
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FRED on Linux: server internals

e Low-level components for interacting with kernel support;

Fred server
Event
IPC Scheduler
loop
devctg Buffers Slots Decs
ctrl ctrl ctrl ctrl

)

User ‘ =
1:“‘T“{ /dev/xdevcfg mod }_{ /dev/fred/buffN /dev/fred/buffctl}{/dev/uioN
erne —

DEVEES cheilver Buffers allocator module UIO Framework
module 61




FRED on Linux: server internals

e Low-level components for interacting with kernel support;

e Inter-process communication with SW-tasks to receive requests
using unix domain sockets.

Fred server
E t
@ | fred sock M IPC ven Scheduler
— loop

devctg Buffers Slots Decs
ctrl ctrl ctrl ctrl

)

User ‘ =
I:“‘T“{ /dev/xdevcfg mod }_{ /dev/fred/buffN /dev/fred/buffctl}{/dev/uioN
erne —

DEVEES cheilver Buffers allocator module UIO Framework
module 62




FRED on Linux;: SW-task API

struct fred data;

struct fred hw_task;

int fred init(struct fred data **self);
int fred bind(struct fred data *self, struct fred hw task **hw task, uint32 t hw task id);
int fred accel (struct fred data *self, const struct fred hw task *hw task);

void fred free(struct fred data *self);

void *fred map buff (const struct fred data *self, struct fred hw task *hw task, int buff idx);

void fred unmap buff (const struct fred data *self, struct fred hw task *hw task,

int buff idx);
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FRED on Linux: SW-task pseudocode example

struct fred data *fred;
struct fred hw_ task *hw task;
uint32 t hw task id = 100;

void sw_task(void)

{
void *buff in = NULL;
void *buff out = NULL;

/* Init communication and bind a HW-task */
fred init(&fred data);
fred bind(fred data, &hw task, hw task id);

/* Map the buffers */
buff in = fred map buff (fred, hw task, 0);
buff out = fred map buff (fred, hw task, 1);

while (done) {
fred_accel (fred data, hw task);

< wait for the next period >




FRED on Linux: use cases

e Image processing and matrix multiplication on the Zybo Board
o 2 slots, 4 HW-tasks (Sobel, FAST, Gmap, and Mult);
o More than 50 partial reconfigurations per second.
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http://www.youtube.com/watch?v=4k_w-Iwltok

FRED on Linux: use cases

e Deep learning on PYNQ with FINN:
o Splitting large a convolutional (Quantized) neural network.
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Static part.

FPGA

66



FRED on Linux: supported platforms

Zynq UltraScale+

Zyng-7000 series SoC MPSoC (in progress)

fred.santannapisa.it
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The FRED framework:

e TODO:

O

Update the reconfiguration driver and the fred server for the new
manufacturer agnostic FPGA Manager;

Extend support to other platforms;

Support HW-task to HW-task communication (waring: model and
real-time analysis should be updated);

I’m here to collect suggestions and advices to improve the runtime!
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Thank you for your attention

marco.pagani@sssup.it

Contributors:

Alessandro Biondi, Francesco Restuccia, Biruk Seyoum, Giuseppe Lipari,
Enrico Rossi, Alessio Balsini, Sara Balleri, Lorenzo Molinari

Project Coordinators:
Alessandro Biondi, Mauro Marinoni, Giorgio Buttazzo
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Questions?
Suggestions?

marco.pagani@sssup.it
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Beyond the runtime

Brief overview on the other parts of the FRED framework




FRED bandwidth regulators / access control overview
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FRED bandwidth regulators / access control overview
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The FLORA floorplanner overview

HW-Task
<<CLBs, BRAMs, DSPs>>

2o

CLB

S>ITW
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The FLORA floorplanner overview

HW-Task

<<CLBs, BRAMs, DSPs>>

2o

CLB

ZS>ITW
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