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Hardware-programmable platforms for embedded applications

Background:
SoC-FPGAs platforms
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SoC-FPGAs platforms for embedded systems

● Traditional SoCs platforms typically includes one or more GP 
cores clusters, a memory controller, and a set of peripherals:
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SoC-FPGAs platforms for embedded systems

● SoC-FPGAs platforms includes an FPGA fabric that can be used 
to extend the system with custom HW-accelerators.
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SoC-FPGAs platforms for embedded systems

● With dynamic partial reconfiguration (DPR) it is possible to 
dynamically swap the set of HW-accelerators at run-time.
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Why FPGA-based HW acceleration for real-time systems?

● Very predictable behavior. It is possible to explicitly control 
the HW-accelerators at clock-level;

● High-performance on SIMD / parallel operations with limited 
energy consumption;

● Bus and memory contention can be explicitly controlled at 
system level using custom arbiters and bandwidth shapers.

Pros
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Why FPGA-based HW acceleration for real-time systems?

● Very predictable behavior. It is possible to explicitly control 
the HW-accelerators at clock-level;

● High-performance on SIMD / parallel operations with limited 
energy consumption;

● Bus and memory contention can be explicitly controlled at 
system level using custom arbiters and bandwidth shapers.

Pros

● Developing HW-accelerators for FPGAs is way more time 
consuming than developing software:

○ Even modern tools like high-level synthesis are not so 
straightforward to use;

○ Less libraries and development stacks are available 
with respect to other platforms (e.g., GPUs).

Cons
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DMA / bus mastering accelerators

● High-performances HW-accelerators implement bus mastering / 
DMA to directly access data in the system memory;

● Let’s consider HW accelerators performing the same computational 
activity (e.g. processing a frame) at each run (HW-tasks).
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HW-task

Memory
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FPGA-based HW acceleration for real-time systems

● Many real-time systems use periodic or sporadic tasks:

○ Placing HW-accelerators statically may be inefficient;

○ FPGA’s logic resources may IDLE most of the time resulting in 
low utilization.

Task A

Task B

FPGA fabric

HW-task
A

HW-task
B

9



FPGA-based HW acceleration for real-time systems

● With DPR it is possible to reconfigure only a portion of the FPGA 
while the remainder of the fabric continues to operate…

○ What if we leverage DPR to reconfigure the HW-tasks at 
run-time only when needed?
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Leveraging DPR for real-time systems

● Both tasks A and B are released and the slot is reconfigured for 
HW-task A utilized by task A
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Leveraging DPR for real-time systems

● Reconfiguration of HW-task A is completed and task A can 
continue.
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Leveraging DPR for real-time systems

● Task A completes and the slot is reconfigured again for HW-task B 
required by task B.
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Leveraging DPR for real-time systems

● Reconfiguration of HW-task B is completed and task B can 
continue
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Leveraging DPR for real-time systems

● And the cycle continues...
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FPGA reconfiguration rate: the trend

● «Well, this looks nice in theory but on real-world FPGA platforms 
the reconfiguration is not fast enough for this»
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FPGA reconfiguration rate: the trend

● «Well, this looks nice in theory but on real-world FPGA platforms 
the reconfiguration is not fast enough for this»

○ Let’s look at the reconfiguration throughput in the last years:
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Leveraging DPR for real-time systems

● DPR a new scheduling dimension!

○ Multiple HW-tasks can utilize the same logic resources in 
time-sharing;

○ Similar to multitasking but in the FPGA area domain;
○ Sort of FPGA “virtualization” since the FPGA can host more 

HW-tasks that what statically possible
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However, SoC FPGAs are complex platforms!

● How to schedule reconfiguration and 
acceleration request in order to achieve 
bounded response times?

● How to manage bus and memory 
contention ensuring safe and predictable 
hardware accelerators behaviour?

● How to efficiently partition the FPGA fabric 
to avoid wasting time and resources?
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● So far so good, but in practice things are a bit more complex for 
real-world systems:
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A framework for leveraging dynamic partial reconfiguration and 
recurrent execution to predictably “virtualize” the FPGA fabric 
guaranteeing bounded delays by design.

The FRED framework
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Overview

● FRED is a combination of several tools to tackle these issues:
○ Platform model + real-time analysis and runtime on Linux;
○ Bus monitors and bandwidth shapers;
○ Automated FPGA fabric floorplanning;
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Overview

● This talk will focus on:

○ Platform model and runtime support on Linux;
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FRED runtime: platform model

● FRED’s runtime platform model considers a system comprising:
○ One (or more) GP cores;
○ A dynamically reconfigurable FPGA fabric;
○ A shared memory;
○ An FPGA reconfiguration DMA engine.

■ One reconfiguration at a time.
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FRED runtime: platform model

● On top of this, two kinds of computational activities:
○ SW-tasks: periodic/sporadic task;
○ HW-tasks: instances of hardware accelerators.
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FRED runtime: platform model

● Each job of a SW-task can call one (or more) HW-task to 
accelerate its execution:
○ The HW-task(s) will be reconfigured on the FPGA fabric.
○ Data are exchanged through shared memory buffers;

HW
task

SW
task
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FRED runtime: FPGA partitioning

● FRED uses a slotted approach for FPGA:
○ The FPGA is divided into partitions;

26

P0

P1

Static regionFPGA



FRED runtime: FPGA partitioning

● FRED uses a slotted approach for FPGA:
○ The FPGA is divided into partitions;
○ Each partitions further is divided into slots of equal sizes;
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FRED runtime: FPGA partitioning

● FRED uses a slotted approach for FPGA:
○ The FPGA is divided into partitions;
○ Each partitions further is divided into slots of equal sizes;
○ HW-tasks are associated to a single partition (affinity).

■ Can be reconfigured in any slot of the partition.
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FRED runtime: HW-tasks scheduling

● How to schedule concurrent acceleration requests avoiding 
unbounded delays?
○ Reconfigurations must be serialized;
○ More HW-tasks than available slots.

            S0                              S1
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FRED runtime: HW-tasks scheduling

● FRED uses a custom scheduling infrastructure based on a 
multi-level queue structure:
○ One queue for each partition (FIFO policy);
○ Single queue for reconfiguration DMA.

■ Ordered by request timestamp (ticket-based).
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FRED runtime: HW-tasks scheduling

● This scheduling infrastructure has been designed for predictability!
○ Analytical upper-bounds on the delay incurred by SW-tasks when 

requesting the execution of HW-tasks.
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FRED runtime: life of a SW-task

First chunk

GP core

FPGA slot

sw_task_body(void)
{

< first chunk >

fred_accel(hw_task);
    

< second chunk >
}
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● Each SW-task start like a regular task performing whatever kind of 
software computation.



FRED runtime: life of a SW-task

First chunk

GP core

FPGA slot

sw_task_body(void)
{

< first chunk >

fred_accel(hw_task);
    

< second chunk >
}
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● Then, it performs an acceleration request calling a HW-task and 
suspend.



FRED runtime: life of a SW-task
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● After a contention phase (shared resources (area) and 
reconfiguration interface) the HW-task is configured on the FPGA



FRED runtime: life of a SW-task
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● And can start its computing phase.



FRED runtime: life of a SW-task

Contention
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}
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● Once the HW-task finishes, the Sw-task unblocks and can 
continue its software part 



Implementing FRED on a feature-rich operating system

FRED on Linux
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FRED on Linux: reference platforms

PS (processing system) PL (FPGA)

A9 CoreARM Cores
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● The Linux implementation of FRED is based on the Xilinx’s 
MPSoCs as the reference platforms:
○ A cluster of ARMv7 or v8 GP cores;
○ Reconfigurable FPGA fabric;
○ built-in reconfiguration DMA (DevC)

DevC Slot 0 Slot 1

DRAM



FRED on Linux: reference platforms

PS (processing system)

DRAM

PL (FPGA)

A9 CoreARM Cores
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DevC Slot 0 Slot 1

● The Linux implementation of FRED is based on the Xilinx’s 
MPSoCs as the reference platforms:
○ A cluster of ARMv7 or v8 GP cores;
○ Reconfigurable FPGA fabric;
○ built-in reconfiguration DMA (DevC)



FRED on Linux: FPGA support design

● Each slot must be able to accommodate any HW-task belonging to 
its partition:

● It is necessary to define a common interface:
○ AXI-MM master for accessing DRAM;
○ AXI-MM lite slave for control and up to 8 pointer registers;
○ Done signal to notify the ARM cores through interrupt;

Interface
specification

Synth.
tool
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PL (FPGA)

FRED on Linux: FPGA support design

● Each slot is also associated to a decoupler (Xilinx IP) to suppress 
glitches during partial reconfiguration;
○ Controlled through AXI slave interface (single reg).

AXI SPR decoupler
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FRED on Linux: FPGA support design
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FRED on Linux: FPGA support design
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FRED on Linux: FPGA support design
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FRED on Linux: FPGA support design
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FRED on Linux: challenges

● How to implement FRED’s shared memory buffers?
○ Linux uses virtual memory!

■ SW-task (processes/threads) uses virtual addresses;
■ HW-tasks, like other HW devices, use physical addresses;
■ How to handle cache coherence?

● How to Implement the FRED’s scheduling policy?
○ Who is in charge of receiving and handling acceleration 

requests?

● How to control hardware resources?
○ HW-tasks modules;
○ Reconfiguration DMA and decouplers.
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FRED on Linux: design keypoints

● FRED on Linux (FredLinux) had been implemented, as much as 
possible, in user-space to improve maintainability and safety:
○ User-space server to handle and schedule acceleration requests;
○ Minimal kernel support.

● Zero-copy design for shared buffers to avoid unnecessary copy 
operations overhead and related BUS/memory traffic;
○ Linux DMA layer provides functions for allocating and mapping 

large coherent memory buffers (using CMA).

● Modular design to allow reusability and future extensions:
○ Core mechanisms are independent from the platform and hardware 

specific support.
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FRED on Linux: software architecture overview

● The central component of FREDLinux is a user-space server 
process named FRED server:
○ Receives and manages acceleration request from SW-tasks.

User

kernel

SW
tasks
SW

tasks
SW

tasks
Fred server
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FRED on Linux: software architecture overview

● The central component of FREDLinux is a user-space server 
process named FRED server:
○ Receives and manages acceleration request from SW-tasks.
○ Relies upon two custom kernel modules, and the UIO 

framework, for low-level operations.

DEVCFG driver 
module

Buffers allocator module UIO Framework

User

kernel

SW
tasks
SW

tasks
SW

tasks
Fred server
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FRED on Linux: buffers allocator module

● The purpose of the buffer allocator module is to:
○ Allocate physically contiguous, uncached, memory buffers;
○ Provide the means by which such buffers can be accessed 

efficiently from user space by SW-tasks.
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FRED on Linux: buffers allocator module

● When loaded, the buffer allocator module instantiates a new 
character device named fred_buffctl.
○ Buffers are allocated during the Fred server initialization 

according to two design description files.
○ Each allocation request is performed by an ioctl() syscall:
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FRED on Linux: buffers allocator module

● On the kernel side, the buffer allocator module:
○ Creates a new character device named buff<N>;
○ Allocates a new contiguous memory buffer, associated with the 

buff<N> device, using the dma_alloc_coherent() function of 
the DMA layer.

Shared mem buff Buffers allocator module

Fred server

ioctl()

/dev/fred/fred_buffctl/dev/fred/buff_X

Design
description 

files
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FRED on Linux: buffers allocator module

● The buff<N> char devices implement the mmap() method using the 
dma_common_mmap() function.
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FRED on Linux: buffers allocator module

● The buff<N> char devices implement the mmap() method using the 
dma_common_mmap() function.

● When a SW-task calls (from userspace) the mmap() on the char 
device the buffer gets mapped into its virtual memory space.

mmap()

Shared mem buff

/dev/fred/buff_X

54

SW
task

SW-task virtual
addr. space

Physical
addr. space



FRED on Linux: buffers allocator module

● Once the buffer is mapped, it can be read and write data without any 
overhead. No copy or flush are needed.

HW
task

SW
task
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FRED on Linux: reconfiguration module

● Xilinx’s original reconfiguration driver (DevC) was designed to be 
safe and easy to use, not for efficiency:

● For each reconfiguration:
○ Allocates a new contiguous memory buffer;
○ Copies the whole bitstream from userspace to kernel;
○ Busy wait until completion.

● Unsuitable for the intensive use of partial reconfiguration required 
by FRED!
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FRED on Linux: reconfiguration module

● To overcome those issue the DevC driver has been modified:
○ Preload all the bitstreams (HW-tasks images) into set of 

physically contiguous buffers.
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FRED on Linux: reconfiguration module

● Now the reconfiguration can also be initiated by an ioctl() call 
passing, as argument, a reference to the buffer;
○ write() method untouched for legacy compatibility.

ioctl()

Physical addr.

Fred server

Shared mem buff
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Bit mem buffs
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FRED on Linux: reconfiguration module

● To avoid busy-waits and allow I/O multiplexing, the driver has been 
enhanced with the poll() method.
○ The ioctl() returns immediately after the reconfiguration has 

been initiated;
○ Once reconfiguration is complete char device fd becomes ready.

Observe
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FRED on Linux: server internals

● FRED Server is organized as an event-driven system:
○ Organized as a state machine driven by an event loop;

■ Monitors the file descriptors using epoll() or poll();
■ Sleep until an event occurs.

○ The HW-tasks scheduler is the core component;

Fred server

Scheduler

DEVCFG driver 
module

Buffers allocator module UIO Framework
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FRED on Linux: server internals

● Low-level components for interacting with kernel support;
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FRED on Linux: server internals

● Low-level components for interacting with kernel support;
● Inter-process communication with SW-tasks to receive requests 

using unix domain sockets.
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Buffers allocator module UIO Framework
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FRED on Linux: SW-task API

6363

struct fred_data;

struct fred_hw_task;

/* ---------------------------------------------------------------------------------------- */

int fred_init(struct fred_data **self);

int fred_bind(struct fred_data *self, struct fred_hw_task **hw_task, uint32_t hw_task_id);

int fred_accel(struct fred_data *self, const struct fred_hw_task *hw_task);

void fred_free(struct fred_data *self);

/* ---------------------------------------------------------------------------------------- */

void *fred_map_buff(const struct fred_data *self, struct fred_hw_task *hw_task, int buff_idx);

void fred_unmap_buff(const struct fred_data *self, struct fred_hw_task *hw_task,

int  buff_idx);



FRED on Linux: SW-task pseudocode example
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struct fred_data *fred;

struct fred_hw_task *hw_task;

uint32_t hw_task_id = 100;

void sw_task(void)

{

void *buff_in = NULL;

void *buff_out = NULL;

/* Init communication and bind a HW-task */

fred_init(&fred_data);

fred_bind(fred_data, &hw_task, hw_task_id);

/* Map the buffers */

buff_in = fred_map_buff(fred, hw_task, 0);

buff_out = fred_map_buff(fred, hw_task, 1);

while (done) {

fred_accel(fred_data, hw_task);

< wait for the next period >

}

}



FRED on Linux: use cases

● Image processing and matrix multiplication on the Zybo Board

○ 2 slots, 4 HW-tasks (Sobel, FAST, Gmap, and Mult);

○ More than 50 partial reconfigurations per second.
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FRED on Linux: use cases

● Deep learning on PYNQ with FINN:

○ Splitting large a convolutional (quantized) neural network.
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FRED on Linux: supported platforms

Zynq-7000 series SoC
Zynq UltraScale+ 

MPSoC (in progress)

fred.santannapisa.it
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The FRED framework:

6868

● TODO:

○ Update the reconfiguration driver and the fred server for the new 
manufacturer agnostic FPGA Manager;

○ Extend support to other platforms;

○ Support HW-task to HW-task communication (waring: model and 
real-time analysis should be updated);

○ I’m here to collect suggestions and advices to improve the runtime!



Thank you for your attention
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Questions?
Suggestions?
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Brief overview on the other parts of the FRED framework

Beyond the runtime
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FPGA

FRED bandwidth regulators / access control overview
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FPGA

FRED bandwidth regulators / access control overview
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The FLORA floorplanner overview
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The FLORA floorplanner overview
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