
Supporting real-time hardware
acceleration on dynamically
reconfigurable SoC FPGAs
Marco Pagani

PhD candidate at
Scuola Superiore Sant’Anna and Université de Lille

1

Hardware-programmable platforms for embedded applications

Background:
SoC-FPGAs platforms

2

SoC-FPGAs platforms for embedded systems

● Traditional SoCs platforms typically includes one or more GP
cores clusters, a memory controller, and a set of peripherals:

CPUs
Clusters

Mem.
Controller

ETH

GPIO

SPI / I2C

CAN
BUS

3

SoC-FPGAs platforms for embedded systems

● SoC-FPGAs platforms includes an FPGA fabric that can be used
to extend the system with custom HW-accelerators.

CPUs
Clusters

Mem.
Controller

ETH

GPIO

SPI / I2C

CAN
BUS

FPGA fabric

HW
accelerator

HW
accelerator

4

SoC-FPGAs platforms for embedded systems

● With dynamic partial reconfiguration (DPR) it is possible to
dynamically swap the set of HW-accelerators at run-time.

CPUs
Clusters

Mem.
Controller

ETH

GPIO

SPI / I2C

CAN
BUS

FPGA fabricFPGA fabricFPGA fabric
Time

HW
accelerator

HW
accelerator

5

Why FPGA-based HW acceleration for real-time systems?

● Very predictable behavior. It is possible to explicitly control
the HW-accelerators at clock-level;

● High-performance on SIMD / parallel operations with limited
energy consumption;

● Bus and memory contention can be explicitly controlled at
system level using custom arbiters and bandwidth shapers.

Pros

6

Why FPGA-based HW acceleration for real-time systems?

● Very predictable behavior. It is possible to explicitly control
the HW-accelerators at clock-level;

● High-performance on SIMD / parallel operations with limited
energy consumption;

● Bus and memory contention can be explicitly controlled at
system level using custom arbiters and bandwidth shapers.

Pros

● Developing HW-accelerators for FPGAs is way more time
consuming than developing software:

○ Even modern tools like high-level synthesis are not so
straightforward to use;

○ Less libraries and development stacks are available
with respect to other platforms (e.g., GPUs).

Cons

7

DMA / bus mastering accelerators

● High-performances HW-accelerators implement bus mastering /
DMA to directly access data in the system memory;

● Let’s consider HW accelerators performing the same computational
activity (e.g. processing a frame) at each run (HW-tasks).

Corner Detector
HW-task

Memory

8

Fetch from
memory

Write back
to memory

FPGA-based HW acceleration for real-time systems

● Many real-time systems use periodic or sporadic tasks:

○ Placing HW-accelerators statically may be inefficient;

○ FPGA’s logic resources may IDLE most of the time resulting in
low utilization.

Task A

Task B

FPGA fabric

HW-task
A

HW-task
B

9

FPGA-based HW acceleration for real-time systems

● With DPR it is possible to reconfigure only a portion of the FPGA
while the remainder of the fabric continues to operate…

○ What if we leverage DPR to reconfigure the HW-tasks at
run-time only when needed?

FPGA fabric

Free
SlotSlot

HW-task
A

HW-task
B

10

Leveraging DPR for real-time systems

● Both tasks A and B are released and the slot is reconfigured for
HW-task A utilized by task A

FPGA fabric

Free

Reconfigurations

Task A

Task B

RCFG

11

Leveraging DPR for real-time systems

● Reconfiguration of HW-task A is completed and task A can
continue.

FPGA fabric

HW-task
A Free

Reconfigurations

Task A

Task B

12

Leveraging DPR for real-time systems

● Task A completes and the slot is reconfigured again for HW-task B
required by task B.

FPGA fabric

RCFG Free

Reconfigurations

Task A

Task B

13

Leveraging DPR for real-time systems

● Reconfiguration of HW-task B is completed and task B can
continue

FPGA fabric

HW-task
B Free

Reconfigurations

Task A

Task B

14

Leveraging DPR for real-time systems

● And the cycle continues...

FPGA fabric

HW-tasks
A/B Free

Reconfigurations

Task A

Task B

15

FPGA reconfiguration rate: the trend

● «Well, this looks nice in theory but on real-world FPGA platforms
the reconfiguration is not fast enough for this»

16

FPGA reconfiguration rate: the trend

● «Well, this looks nice in theory but on real-world FPGA platforms
the reconfiguration is not fast enough for this»

○ Let’s look at the reconfiguration throughput in the last years:

17

Leveraging DPR for real-time systems

● DPR a new scheduling dimension!

○ Multiple HW-tasks can utilize the same logic resources in
time-sharing;

○ Similar to multitasking but in the FPGA area domain;
○ Sort of FPGA “virtualization” since the FPGA can host more

HW-tasks that what statically possible

FIR
Filter

Image
resizer

FPGA

Slot 0

Slot 1

Slot 2

Convolution
kernel

Pooling
kernel

Encryption

Hash
function

18

However, SoC FPGAs are complex platforms!

● How to schedule reconfiguration and
acceleration request in order to achieve
bounded response times?

● How to manage bus and memory
contention ensuring safe and predictable
hardware accelerators behaviour?

● How to efficiently partition the FPGA fabric
to avoid wasting time and resources?

Image
resizer

Pooling
kernel

Interconnect

S0

S1

S2
S3

Slot 1
Encryption

Hash
function

?

!

● So far so good, but in practice things are a bit more complex for
real-world systems:

19

A framework for leveraging dynamic partial reconfiguration and
recurrent execution to predictably “virtualize” the FPGA fabric
guaranteeing bounded delays by design.

The FRED framework

20

Overview

● FRED is a combination of several tools to tackle these issues:
○ Platform model + real-time analysis and runtime on Linux;
○ Bus monitors and bandwidth shapers;
○ Automated FPGA fabric floorplanning;

21

Overview

● This talk will focus on:

○ Platform model and runtime support on Linux;

22

FRED runtime: platform model

● FRED’s runtime platform model considers a system comprising:
○ One (or more) GP cores;
○ A dynamically reconfigurable FPGA fabric;
○ A shared memory;
○ An FPGA reconfiguration DMA engine.

■ One reconfiguration at a time.

FPGA
fabric

LL Cache

Interconnects / mem. controller

Core 0

Memory

Core N

23

RCFG

FRED runtime: platform model

● On top of this, two kinds of computational activities:
○ SW-tasks: periodic/sporadic task;
○ HW-tasks: instances of hardware accelerators.

HW
task

SW
task

Fixed Priority
scheduling

Non-preemptive
execution

24

FPGA
fabric

LL Cache

Core 0

Memory

Core N

Interconnects / mem. controller RCFG

FRED runtime: platform model

● Each job of a SW-task can call one (or more) HW-task to
accelerate its execution:
○ The HW-task(s) will be reconfigured on the FPGA fabric.
○ Data are exchanged through shared memory buffers;

HW
task

SW
task

25

Memory

call

FRED runtime: FPGA partitioning

● FRED uses a slotted approach for FPGA:
○ The FPGA is divided into partitions;

26

P0

P1

Static regionFPGA

FRED runtime: FPGA partitioning

● FRED uses a slotted approach for FPGA:
○ The FPGA is divided into partitions;
○ Each partitions further is divided into slots of equal sizes;

27

 S0 S1 S2 S2

 S0 S1P0

P1

Static regionFPGA

FRED runtime: FPGA partitioning

● FRED uses a slotted approach for FPGA:
○ The FPGA is divided into partitions;
○ Each partitions further is divided into slots of equal sizes;
○ HW-tasks are associated to a single partition (affinity).

■ Can be reconfigured in any slot of the partition.

28

HW
Task

HW
Task

 S0 S1 S2 S2

 S0 S1P0

P1

Static regionFPGA

HW
Task
HW
task

HW
Task
HW
Task
HW
Task
HW
task

FRED runtime: HW-tasks scheduling

● How to schedule concurrent acceleration requests avoiding
unbounded delays?
○ Reconfigurations must be serialized;
○ More HW-tasks than available slots.

 S0 S1

29

Static region

FPGA

HW
task A

SW
task A

HW
task B

SW
task B

HW
task C

SW
task C

?

FRED runtime: HW-tasks scheduling

● FRED uses a custom scheduling infrastructure based on a
multi-level queue structure:
○ One queue for each partition (FIFO policy);
○ Single queue for reconfiguration DMA.

■ Ordered by request timestamp (ticket-based).

30

FPGA

P0 Queue

P1 Queue

RCFG Queue

Affinity

 S0 S1 S2 S2

 S0 S1

Static region

HW
task

SW
task

RCFG

FRED runtime: HW-tasks scheduling

● This scheduling infrastructure has been designed for predictability!
○ Analytical upper-bounds on the delay incurred by SW-tasks when

requesting the execution of HW-tasks.

31

HW
task

SW
task

Bounded delay!

Memory

● A. Biondi, A. Balsini, M. Pagani, E. Rossi, M. Marinoni, and G. Buttazzo, “A Framework for
Supporting Real-Time Applications on Dynamic Reconfigurable FPGAs”, Proc. of the IEEE
Real-Time Systems Symposium (RTSS 2016)

● M. Pagani, M. Marinoni, A. Biondi, A. Balsini, and G. Buttazzo, “Towards Real-Time Operating
Systems for Heterogeneous Reconfigurable Platforms”, Proc. of the 12th Annual Workshop on
Operating Systems Platforms for Embedded Real-Time Applications (OSPERT16)

FRED runtime: life of a SW-task

First chunk

GP core

FPGA slot

sw_task_body(void)
{

< first chunk >

fred_accel(hw_task);

< second chunk >
}

32

● Each SW-task start like a regular task performing whatever kind of
software computation.

FRED runtime: life of a SW-task

First chunk

GP core

FPGA slot

sw_task_body(void)
{

< first chunk >

fred_accel(hw_task);

< second chunk >
}

33

● Then, it performs an acceleration request calling a HW-task and
suspend.

FRED runtime: life of a SW-task

Contention
delay

RCFGFirst chunk

GP core

FPGA slot

sw_task_body(void)
{

< first chunk >

fred_accel(hw_task);

< second chunk >
}

34

● After a contention phase (shared resources (area) and
reconfiguration interface) the HW-task is configured on the FPGA

FRED runtime: life of a SW-task

Contention
delay

RCFGFirst chunk

GP core

FPGA slot

HW-task exec.

sw_task_body(void)
{

< first chunk >

fred_accel(hw_task);

< second chunk >
}

35

● And can start its computing phase.

FRED runtime: life of a SW-task

Contention
delay

RCFGFirst chunk Second
chunk

GP core

FPGA slot

HW-task exec.

sw_task_body(void)
{

< first chunk >

fred_accel(hw_task);

< second chunk >
}

36

● Once the HW-task finishes, the Sw-task unblocks and can
continue its software part

Implementing FRED on a feature-rich operating system

FRED on Linux

37

FRED on Linux: reference platforms

PS (processing system) PL (FPGA)

A9 CoreARM Cores

38

● The Linux implementation of FRED is based on the Xilinx’s
MPSoCs as the reference platforms:
○ A cluster of ARMv7 or v8 GP cores;
○ Reconfigurable FPGA fabric;
○ built-in reconfiguration DMA (DevC)

DevC Slot 0 Slot 1

DRAM

FRED on Linux: reference platforms

PS (processing system)

DRAM

PL (FPGA)

A9 CoreARM Cores

39

DevC Slot 0 Slot 1

● The Linux implementation of FRED is based on the Xilinx’s
MPSoCs as the reference platforms:
○ A cluster of ARMv7 or v8 GP cores;
○ Reconfigurable FPGA fabric;
○ built-in reconfiguration DMA (DevC)

FRED on Linux: FPGA support design

● Each slot must be able to accommodate any HW-task belonging to
its partition:

● It is necessary to define a common interface:
○ AXI-MM master for accessing DRAM;
○ AXI-MM lite slave for control and up to 8 pointer registers;
○ Done signal to notify the ARM cores through interrupt;

Interface
specification

Synth.
tool

40

HW-task
implementation

AXI S INT

Regs

AXI M
HW
task

PL (FPGA)

FRED on Linux: FPGA support design

● Each slot is also associated to a decoupler (Xilinx IP) to suppress
glitches during partial reconfiguration;
○ Controlled through AXI slave interface (single reg).

AXI SPR decoupler

Slot

Hardware
Accelerator

AXI MAXI S INT

Regs Reconfig.
region

41

FRED on Linux: FPGA support design

AXI S AXI S

PS AXI HP slave ports

PL to Memory
interconnect

PS AXI GP master ports

Central interconnect

DDR Controller

APU
(ARM Cores)

PR decoupler PR decoupler

Slot NSlot 0

PS

PL
(FPGA)

HW-task

AXI MAXI S INT

HW-task

AXI MAXI S INT

Regs Regs

42

FRED on Linux: FPGA support design

AXI S AXI S

PS AXI HP slave ports

PL to Memory
interconnect

PS AXI GP master ports

Central interconnect

DDR Controller

AXI
Interconnect

APU
(ARM Cores)

PR decoupler PR decoupler

Slot NSlot 0

PS

PL
(FPGA)

HW-task

AXI MAXI S INT

HW-task

AXI MAXI S INT

Regs Regs

43

FRED on Linux: FPGA support design

AXI S AXI S

PS AXI HP slave ports

PL to Memory
interconnect

PS AXI GP master ports

Central interconnect

DDR Controller

AXI
Interconnect Concat

APU
(ARM Cores)

PR decoupler PR decoupler

Slot NSlot 0

PS

PL
(FPGA)

HW-task

AXI MAXI S INT

HW-task

AXI MAXI S INT

Regs Regs

44

FRED on Linux: FPGA support design

AXI S AXI S

PS AXI HP slave ports

PL to Memory
interconnect

PS AXI GP master ports

Central interconnect

DDR Controller

AXI
Interconnect Concat

APU
(ARM Cores)

AXI
Interconnects

AXI
Interconnects

AXI
Interconnects

PR decoupler PR decoupler

Slot NSlot 0

PS

PL
(FPGA)

HW-task

AXI MAXI S INT

HW-task

AXI MAXI S INT

Regs Regs

45

FRED on Linux: challenges

● How to implement FRED’s shared memory buffers?
○ Linux uses virtual memory!

■ SW-task (processes/threads) uses virtual addresses;
■ HW-tasks, like other HW devices, use physical addresses;
■ How to handle cache coherence?

● How to Implement the FRED’s scheduling policy?
○ Who is in charge of receiving and handling acceleration

requests?

● How to control hardware resources?
○ HW-tasks modules;
○ Reconfiguration DMA and decouplers.

46

FRED on Linux: design keypoints

● FRED on Linux (FredLinux) had been implemented, as much as
possible, in user-space to improve maintainability and safety:
○ User-space server to handle and schedule acceleration requests;
○ Minimal kernel support.

● Zero-copy design for shared buffers to avoid unnecessary copy
operations overhead and related BUS/memory traffic;
○ Linux DMA layer provides functions for allocating and mapping

large coherent memory buffers (using CMA).

● Modular design to allow reusability and future extensions:
○ Core mechanisms are independent from the platform and hardware

specific support.

47

FRED on Linux: software architecture overview

● The central component of FREDLinux is a user-space server
process named FRED server:
○ Receives and manages acceleration request from SW-tasks.

User

kernel

SW
tasks
SW

tasks
SW

tasks
Fred server

48

FRED on Linux: software architecture overview

● The central component of FREDLinux is a user-space server
process named FRED server:
○ Receives and manages acceleration request from SW-tasks.
○ Relies upon two custom kernel modules, and the UIO

framework, for low-level operations.

DEVCFG driver
module

Buffers allocator module UIO Framework

User

kernel

SW
tasks
SW

tasks
SW

tasks
Fred server

49

FRED on Linux: buffers allocator module

● The purpose of the buffer allocator module is to:
○ Allocate physically contiguous, uncached, memory buffers;
○ Provide the means by which such buffers can be accessed

efficiently from user space by SW-tasks.

50

HW
task

Memory

SW
task

FRED on Linux: buffers allocator module

● When loaded, the buffer allocator module instantiates a new
character device named fred_buffctl.
○ Buffers are allocated during the Fred server initialization

according to two design description files.
○ Each allocation request is performed by an ioctl() syscall:

51

Buffers allocator module

Fred server

ioctl()

/dev/fred/fred_buffctl

Design
description

files

User

kernel

FRED on Linux: buffers allocator module

● On the kernel side, the buffer allocator module:
○ Creates a new character device named buff<N>;
○ Allocates a new contiguous memory buffer, associated with the

buff<N> device, using the dma_alloc_coherent() function of
the DMA layer.

Shared mem buff Buffers allocator module

Fred server

ioctl()

/dev/fred/fred_buffctl/dev/fred/buff_X

Design
description

files

52

User

kernel

FRED on Linux: buffers allocator module

● The buff<N> char devices implement the mmap() method using the
dma_common_mmap() function.

53

Shared mem buff

/dev/fred/buff_X

SW
task

SW-task virtual
addr. space

Physical
addr. space

FRED on Linux: buffers allocator module

● The buff<N> char devices implement the mmap() method using the
dma_common_mmap() function.

● When a SW-task calls (from userspace) the mmap() on the char
device the buffer gets mapped into its virtual memory space.

mmap()

Shared mem buff

/dev/fred/buff_X

54

SW
task

SW-task virtual
addr. space

Physical
addr. space

FRED on Linux: buffers allocator module

● Once the buffer is mapped, it can be read and write data without any
overhead. No copy or flush are needed.

HW
task

SW
task

55

SW-task virtual
addr. space

Physical
addr. space

Shared mem buff

/dev/fred/buff_X

FRED on Linux: reconfiguration module

● Xilinx’s original reconfiguration driver (DevC) was designed to be
safe and easy to use, not for efficiency:

● For each reconfiguration:
○ Allocates a new contiguous memory buffer;
○ Copies the whole bitstream from userspace to kernel;
○ Busy wait until completion.

● Unsuitable for the intensive use of partial reconfiguration required
by FRED!

56

DRAM

PL (FPGA)

DevC

Slot 0 Slot 1

FRED on Linux: reconfiguration module

● To overcome those issue the DevC driver has been modified:
○ Preload all the bitstreams (HW-tasks images) into set of

physically contiguous buffers.

Shared mem buff
(/dev/fred/buff_X

)

Shared mem buff
(/dev/fred/buff_X

)
Bit mem buffs

SD card
Bits.

Physical addr.

DEVCFG driver
module

Fred server

mem
mapped

57

User

kernel

/dev/fred/buff_X/dev/fred/buff_X/dev/fred/buff_X/dev/xdevcfg_mod

FRED on Linux: reconfiguration module

● Now the reconfiguration can also be initiated by an ioctl() call
passing, as argument, a reference to the buffer;
○ write() method untouched for legacy compatibility.

ioctl()

Physical addr.

Fred server

Shared mem buff
(/dev/fred/buff_X

)

Shared mem buff
(/dev/fred/buff_X

)
Bit mem buffs

DEVCFG driver
module

58

User

kernel

/dev/fred/buff_X/dev/fred/buff_X/dev/fred/buff_X/dev/xdevcfg_mod

FRED on Linux: reconfiguration module

● To avoid busy-waits and allow I/O multiplexing, the driver has been
enhanced with the poll() method.
○ The ioctl() returns immediately after the reconfiguration has

been initiated;
○ Once reconfiguration is complete char device fd becomes ready.

Observe

FPGA
cfg

mem

/dev/xdevcfg_mod
/dev/fred/buff_X/dev/fred/buff_X/dev/fred/buff_X

Shared mem buff
(/dev/fred/buff_X

)

Shared mem buff
(/dev/fred/buff_X

)
Bit mem buff

DEVCFG driver
module

Fred server

Physical addr.

Bits.

59

User

kernel

FRED on Linux: server internals

● FRED Server is organized as an event-driven system:
○ Organized as a state machine driven by an event loop;

■ Monitors the file descriptors using epoll() or poll();
■ Sleep until an event occurs.

○ The HW-tasks scheduler is the core component;

Fred server

Scheduler

DEVCFG driver
module

Buffers allocator module UIO Framework
60

/dev/uioN/dev/fred/buffN/dev/fred/buffN/dev/fred/buffN /dev/fred/buffctl /dev/uioN/dev/uioN/dev/xdevcfg_mod

Event
loop

Slots
ctrl

Buffers
ctrl

devcfg
ctrl

Decs
ctrl

IPC

User

kernel

FRED on Linux: server internals

● Low-level components for interacting with kernel support;

DEVCFG driver
module

Buffers allocator module UIO Framework
61

Fred server

Scheduler

/dev/uioN/dev/fred/buffN/dev/fred/buffN/dev/fred/buffN /dev/fred/buffctl /dev/uioN/dev/uioN/dev/xdevcfg_mod

Event
loop

Slots
ctrl

Buffers
ctrl

devcfg
ctrl

Decs
ctrl

IPC

User

kernel

FRED on Linux: server internals

● Low-level components for interacting with kernel support;
● Inter-process communication with SW-tasks to receive requests

using unix domain sockets.

DEVCFG driver
module

Buffers allocator module UIO Framework
62

Fred server

Scheduler

/dev/uioN/dev/fred/buffN/dev/fred/buffN/dev/fred/buffN /dev/fred/buffctl /dev/uioN/dev/uioN/dev/xdevcfg_mod

Event
loop

Slots
ctrl

Buffers
ctrl

devcfg
ctrl

Decs
ctrl

IPC

User

kernel

SW-tasksSW-tasksSW
tasks

fred_sock

FRED on Linux: SW-task API

6363

struct fred_data;

struct fred_hw_task;

/* -- */

int fred_init(struct fred_data **self);

int fred_bind(struct fred_data *self, struct fred_hw_task **hw_task, uint32_t hw_task_id);

int fred_accel(struct fred_data *self, const struct fred_hw_task *hw_task);

void fred_free(struct fred_data *self);

/* -- */

void *fred_map_buff(const struct fred_data *self, struct fred_hw_task *hw_task, int buff_idx);

void fred_unmap_buff(const struct fred_data *self, struct fred_hw_task *hw_task,

int buff_idx);

FRED on Linux: SW-task pseudocode example

6464

struct fred_data *fred;

struct fred_hw_task *hw_task;

uint32_t hw_task_id = 100;

void sw_task(void)

{

void *buff_in = NULL;

void *buff_out = NULL;

/* Init communication and bind a HW-task */

fred_init(&fred_data);

fred_bind(fred_data, &hw_task, hw_task_id);

/* Map the buffers */

buff_in = fred_map_buff(fred, hw_task, 0);

buff_out = fred_map_buff(fred, hw_task, 1);

while (done) {

fred_accel(fred_data, hw_task);

< wait for the next period >

}

}

FRED on Linux: use cases

● Image processing and matrix multiplication on the Zybo Board

○ 2 slots, 4 HW-tasks (Sobel, FAST, Gmap, and Mult);

○ More than 50 partial reconfigurations per second.

65

http://www.youtube.com/watch?v=4k_w-Iwltok

FRED on Linux: use cases

● Deep learning on PYNQ with FINN:

○ Splitting large a convolutional (quantized) neural network.
La

ye
r 1

La
ye

r 2

La
ye

r 3

La
ye

r 4

La
ye

r 5

La
ye

r 6

La
ye

r 7

La
ye

r 8

La
ye

r 9

HW-task
A

HW-task
B

FPGA

Slot

Static part.

66

FRED on Linux: supported platforms

Zynq-7000 series SoC
Zynq UltraScale+

MPSoC (in progress)

fred.santannapisa.it

67

The FRED framework:

6868

● TODO:

○ Update the reconfiguration driver and the fred server for the new
manufacturer agnostic FPGA Manager;

○ Extend support to other platforms;

○ Support HW-task to HW-task communication (waring: model and
real-time analysis should be updated);

○ I’m here to collect suggestions and advices to improve the runtime!

Thank you for your attention

69

marco.pagani@sssup.it

Contributors:
Alessandro Biondi, Francesco Restuccia, Biruk Seyoum, Giuseppe Lipari,

Enrico Rossi, Alessio Balsini, Sara Balleri, Lorenzo Molinari

Project Coordinators:
Alessandro Biondi, Mauro Marinoni, Giorgio Buttazzo

Questions?
Suggestions?

70

marco.pagani@sssup.it

Brief overview on the other parts of the FRED framework

Beyond the runtime

71

FPGA

FRED bandwidth regulators / access control overview

72

AXI InterconnectHW-Task

Memory

DRAM controller

Kernel
mem

FPGA

FRED bandwidth regulators / access control overview

73

AXI InterconnectBUS
supervisor

Tr.

bi

0 2PP t

t

HW-Task

MemoryR0 R7R1

DRAM controller

Kernel
mem

The FLORA floorplanner overview

74

CLB B
R
A
M

D
S
P

HW-Tasks
<<CLBs, BRAMs, DSPs>>

HW-Tasks
<<CLBs, BRAMs, DSPs>>

HW-Task

<<CLBs, BRAMs, DSPs>>

The FLORA floorplanner overview

75

CLB B
R
A
M

D
S
P

HW-Tasks
<<CLBs, BRAMs, DSPs>>

HW-Tasks
<<CLBs, BRAMs, DSPs>>

HW-Task

<<CLBs, BRAMs, DSPs>>

