
SCHED_DEADLINE: What’s next (?)

Daniel Bristot de Oliveira
Juri Lelli

Real-time Linux Summit 2019

Red Hat

Before start

2

In a system with the following periodic real-time tasks:

Deadline Scheduler - Daniel Bristot de Oliveira, Red Hat.3

Real-time scheduling - an exercise

Task WCET Period = Deadline U

t1 1 4 0.250

t2 2 6 0.330

t3 3 8 0.375

∑(U) 0.958 (< 1)

Deadline Scheduler - Daniel Bristot de Oliveira, Red Hat.4

Task-level Fixed Priority: Fixed priority RM

Deadline Scheduler - Daniel Bristot de Oliveira, Red Hat.5

Job-level Fixed Priority - EDF

Red Hat

That is why people like deadline
scheduler.

6

Red Hat

Other advantages of sched deadline

● User do not need to “chose” the priorities
● The user set the runtime and period of tasks

● Miss behave tasks do not cause damage on the system
● The workload of the system is known

○ This allowed the development of other features like:
■ GRUB: That allows a task to run for a longer by using the time not used by other

task!
■ GRUP-PA: That allows a processor to scale down the frequency when the system is

not overloaded.
■ Always without missing deadlines!

○

7

Red Hat

But there is still some work to be done!

8

Red Hat

Non-root usage

To: linux-rt-users@xxxxxxxxxxxxxxx

Subject: SCHED_DEADLINE as user

From: <xxxxxxxxxxxxxxx>

Date: Wed, 15 Aug 2018 14:08:20 +0800

...

i wonder, what's the preferred way to obtain SCHED_DEADLINE privileges
as non-root user?
for SCHED_RR/SCHED_FIFO i'm typically using pam_limits/limits.conf, but
i haven't found any resources on how SCHED_DEADLINE can be obtained ...

... it's a showstopper for using it in audio applications, which are running
as user.

9

Red Hat

Non-root usage

❖ Only ROOT can sched_setattr() to SCHED_DEADLINE
❖ Lack of a sane and safe Priority Inheritance mechanism

➢ Today: deadline inheritance w/o runtime enforcement
➢ We need: bandwidth inheritance w/ enforcement (proxy exec.)

10

Red Hat

Better Priority Inheritance
(AKA proxy execution)

11

Red Hat

Proxy execution

12

Low (A)

Lock(A)

High

Lock(A)

ARGH!!

No Priority Inheritance is
bad :-(

Medium

Red Hat

Priority inheritance for Sched Deadline =
Deadline inheritance

13

Red Hat

Proxy execution

14

Low (A)

Lock(A)

High

Lock(A)
ARGH^2 !

Red Hat

It can be worse than not having priority
inheritance at all!

15

Red Hat

Proxy execution

● What’s the problem ?
● Current Priority Inheritance mechanism is not safe for !root

○ Deadline inheritance (... also slightly incorrect)
○ Priority boosted tasks are outside runtime enforcement

❖ We would need to inherit donors’ bandwidth (runtime/period)
❖ And keep runtime enforcement on while doing that
❖ Basically let the mutex owner execute using the scheduling context of a (several)

donor(s)

16

Red Hat

Proxy execution

17

High’s task_struct

SCHEDULING

Info for implementing
a policy, e.g.

● tsk->se
● tsk->rt
● tsk->dl

EXECUTION

Info for running the
task, e.g.

● affinity

Red Hat

Proxy execution

18

Low (A)

Lock(A)

High

Lock(A)

tsk->dl

Low

High

blocked_on

owner

proxy

Red Hat

Proxy execution

19

Low (A)

Lock(A)

High

Lock(A)We would like
“something” like … Bad design?

High’s runtime
depleted

Medium

Not
affected

Red Hat

Proxy execution

❖ More general than Priority Inheritance for SCHED_DEADLINE
❖ Could be applied to other synch mechanisms (e.g., cond. var., yield_to like calls)
❖ “Boosted” task could inherit additional properties, e.g.

➢ NICE
➢ RT prio
➢ Utilization clamping values
➢ ...

20

Red Hat

Cgroups support

21

Red Hat

Cgroups support

❖ Cgroups based bandwidth management
❖ Hierarchical scheduling

22

Red Hat

Cgroups support

❖ Cgroups based bandwidth management
➢ System administrator could reserve a fraction of total bandwidth to users
➢ Users would add tasks to this reservation

■ Sharing the same reservation

23

Red Hat

Cgroups support

❖ Hierarchical scheduling - Hierarchical Constant Bandwidth Server (H-CBS)
➢ Nest SCHED_{FIFO,RR} entities within SCHED_DEADLINE

24

DEADLINE DEADLINE FIFO NORMAL

FIFO FIFO FIFO

Root
scheduler

Level 1
scheduler

Red Hat

This allows the creation of pipelines

25

Red Hat

Cgroups support

26

DEADLINE
1

DEADLINE
2

DEADLINE
3

DEADLINE
4

dpipelin
e

d1 d2 & 3 d4

FIFO 1

FIFO 2

FIFO 3

FIFO 4

dpipelin
e

DEADLINE (group)

Red Hat

Cgroups support

27
CPU 0 CPU N

Red Hat

Re-working RT Throttling to use
DL servers

28

Red Hat

RT Throttling

● The real-time throttling mechanism is a safeguard for misbehaving real-time tasks
● The idea is to avoid real-time tasks starving non-rt tasks
● By default, real-time tasks can run:

○ kernel.sched_rt_runtime_us / kernel.sched_rt_period_us
■ 950000 / 1000000

29

Red Hat

RT Throttling

● For SMP, it is also possible to share runtime among the runqueues of the same sched
domain (RT_RUNTIME_SHARE).

30

Red Hat

Everything works!

No?

What is the deal?

31

Red Hat

RT Throttling Pitfalls

● In the absence of normal tasks:
○ Single core or NO_RT_RUNTIME_SHARE

32

Red Hat

RT Throttling Pitfalls

● In the presence of per-cpu kernel threads:
○ RT_RUNTIME_SHARE

33

Red Hat

RT Throttling rework

❖ Change the way we implement RT Throttling
❖ Instead of throttling, provide bandwidth (a reservation) for RT and NON-RT schedulers:

➢ RT/DL schedulers: 950/1000 ms
➢ Non-rt schedulers: 50/1000 ms
➢ Per-cpu schedulers (partitioned)

❖ Prioritize the servers according to the timing behavior

34

Red Hat

DL Server

● Suggestion from upstream is to have
○ A CBS Server scheduled for DL and RT (950ms/1000ms)
○ A CBS to normal (50ms/1000ms)
○ scheduling by the deadline:

35

Red Hat

DL Server + Reclaiming

● We also need to implement reclaiming

36

Red Hat

Things are not that simple

37

Red Hat

More studies required

❖ Pure SCHED_DEADLINE does not apply:
❖ GRUB also does not directly apply:

➢ GRUB is fair:
■ Can cause the NORMAL reservation to use more than runtime/period in the

presence of suspending RT tasks.
❖ Points to explore:

➢ Use EDZL?
➢ Put only RT tasks in the server, with reclaiming?

38

Red Hat

Schedulability improvements

39

Red Hat40

The semi-partitioned scheduler

There are some cases in which a feasible task set is not scheduled by neither global or partitioned
schedulers. For instance:

Red Hat41

What does the academy have to say about it?

● B. Brandenburg and M. Gül, “Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor
Real-Time Scheduling with Semi-Partitioned Reservations” shows that:

○ “usually ≥ 99% schedulable utilization — can be achieved with simple, well-known and
well-understood, low-overhead techniques (+ a few tweaks).”

○ This work, however, is not applicable for Linux because the workload is static

● D. Casini, A. Biondi, G. Buttazzo, “Semi-Partitioned Scheduling of Dynamic Real-Time Workload: A
Practical Approach Based on Analysis-Driven Load Balancing.”

○ This paper relaxes the first, to be able to deal with dynamic workload.

Red Hat42

How good is this online semi-partitioned scheduler?

Red Hat43

How does semi-partitioned place tasks?

Red Hat44

Pin as much task as possible

Red Hat45

When it is not possible to pin, it splits a task.

Red Hat46

Voilà!

Red Hat47

Semi-partitioned benefits

● Good points:
○ The majority of problems are reduced to single-core!
○ Less overhead:

■ The heuristics run only when setting attr/affinity/hotplug
■ There is no need to pull tasks, just push!
■ Migrations are bounded to M, for the system!

○ Tasks are mostly pinned to a single CPU!
○ Affinities come for FREE! YAY!

Red Hat48

Semi-partitioned benefits

● Bad point:
○ Average response time is higher!

● Things we need to “think more”
○ The - real - admission control must to run in the kernel
○ The design of the scheduler considers implicit deadline - likewise the current… so.

Red Hat

Let us know what else you need!

49

THANK YOU

plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHatNews

50

