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Before start
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In a system with the following periodic real-time tasks:

Deadline Scheduler - Daniel Bristot de Oliveira, Red Hat.3

Real-time scheduling - an exercise

Task WCET Period = Deadline U

t1 1 4 0.250

t2 2 6 0.330

t3 3 8 0.375

∑(U) 0.958 ( < 1)



Deadline Scheduler - Daniel Bristot de Oliveira, Red Hat.4

Task-level Fixed Priority: Fixed priority RM



Deadline Scheduler - Daniel Bristot de Oliveira, Red Hat.5

Job-level Fixed Priority - EDF
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That is why people like deadline 
scheduler.
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Other advantages of sched deadline

● User do not need to “chose” the priorities
● The user set the runtime and period of tasks

● Miss behave tasks do not cause damage on the system
● The workload of the system is known

○ This allowed the development of other features like:
■ GRUB: That allows a task to run for a longer by using the time not used by other 

task!
■ GRUP-PA: That allows a processor to scale down the frequency when the system is 

not overloaded.
■ Always without missing deadlines!

○
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But there is still some work to be done!

8



Red Hat

Non-root usage

To: linux-rt-users@xxxxxxxxxxxxxxx

Subject: SCHED_DEADLINE as user

From: <xxxxxxxxxxxxxxx>

Date: Wed, 15 Aug 2018 14:08:20 +0800

...

i wonder, what's the preferred way to obtain SCHED_DEADLINE privileges
as non-root user?
for SCHED_RR/SCHED_FIFO i'm typically using pam_limits/limits.conf, but
i haven't found any resources on how SCHED_DEADLINE can be obtained ...

... it's a showstopper for using it in audio applications, which are running
as user.
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Non-root usage

❖ Only ROOT can sched_setattr()  to SCHED_DEADLINE
❖ Lack of a sane and safe Priority Inheritance mechanism

➢ Today: deadline inheritance w/o runtime enforcement
➢ We need: bandwidth inheritance w/ enforcement (proxy exec.)
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Better Priority Inheritance
(AKA proxy execution)
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Proxy execution
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Low (A)

Lock(A)

High

Lock(A)

ARGH!!

No Priority Inheritance is 
bad :-(

Medium
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Priority inheritance for Sched Deadline = 
Deadline inheritance
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Proxy execution
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Low (A)

Lock(A)

High

Lock(A)
ARGH^2 !
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It can be worse than not having priority 
inheritance at all!
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Proxy execution

● What’s the problem ?
● Current Priority Inheritance mechanism is not safe for !root

○ Deadline inheritance ( ... also slightly incorrect)
○ Priority boosted tasks are outside runtime enforcement

❖ We would need to inherit donors’ bandwidth (runtime/period)
❖ And keep runtime enforcement on while doing that
❖ Basically let the mutex owner execute using the scheduling context of a (several) 

donor(s)
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Proxy execution
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High’s task_struct

SCHEDULING

Info for implementing 
a policy, e.g.

● tsk->se
● tsk->rt
● tsk->dl

EXECUTION

Info for running the 
task, e.g.

● affinity
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Proxy execution
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owner
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Proxy execution
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Low (A)

Lock(A)

High

Lock(A)We would like 
“something” like … Bad design?

High’s runtime 
depleted

Medium

Not 
affected
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Proxy execution

❖ More general than Priority Inheritance for SCHED_DEADLINE
❖ Could be applied to other synch mechanisms (e.g., cond. var., yield_to like calls)
❖ “Boosted” task could inherit additional properties, e.g.

➢ NICE
➢ RT prio
➢ Utilization clamping values
➢ ...
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Cgroups support
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Cgroups support

❖ Cgroups based bandwidth management
❖ Hierarchical scheduling
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Cgroups support

❖ Cgroups based bandwidth management
➢ System administrator could reserve a fraction of total bandwidth to users
➢ Users would add tasks to this reservation

■ Sharing the same reservation
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Cgroups support

❖ Hierarchical scheduling - Hierarchical Constant Bandwidth Server (H-CBS)
➢ Nest SCHED_{FIFO,RR} entities within SCHED_DEADLINE
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This allows the creation of pipelines
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Cgroups support
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Cgroups support
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Re-working RT Throttling to use
DL servers
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RT Throttling

● The real-time throttling mechanism is a safeguard for misbehaving real-time tasks
● The idea is to avoid real-time tasks starving non-rt tasks 
● By default, real-time tasks can run:

○ kernel.sched_rt_runtime_us / kernel.sched_rt_period_us
■ 950000 / 1000000
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RT Throttling

● For SMP, it is also possible to share runtime among the runqueues of the same sched 
domain (RT_RUNTIME_SHARE).
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Everything works!

No?

What is the deal?
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RT Throttling Pitfalls

● In the absence of normal tasks:
○ Single core or NO_RT_RUNTIME_SHARE
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RT Throttling Pitfalls

● In the presence of per-cpu kernel threads:
○ RT_RUNTIME_SHARE
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RT Throttling rework

❖ Change the way we implement RT Throttling
❖ Instead of throttling, provide bandwidth (a reservation) for RT and NON-RT schedulers:

➢ RT/DL schedulers: 950/1000 ms
➢ Non-rt schedulers:  50/1000 ms
➢ Per-cpu schedulers (partitioned)

❖ Prioritize the servers according to the timing behavior
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DL Server

● Suggestion from upstream is to have
○ A CBS Server scheduled for DL and RT (950ms/1000ms)
○ A CBS to normal (50ms/1000ms)
○ scheduling by the deadline:
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DL Server + Reclaiming

● We also need to implement reclaiming
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Things are not that simple

37



Red Hat

More studies required

❖ Pure SCHED_DEADLINE does not apply:
❖ GRUB also does not directly apply:

➢ GRUB is fair:
■ Can cause the NORMAL reservation to use more than runtime/period in the 

presence of suspending RT tasks.
❖ Points to explore:

➢ Use EDZL?
➢ Put only RT tasks in the server, with reclaiming?
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Schedulability improvements
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The semi-partitioned scheduler

There are some cases in which a feasible task set is not scheduled by neither global or partitioned 
schedulers. For instance:
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What does the academy have to say about it?

● B. Brandenburg and M. Gül, “Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor 
Real-Time Scheduling with Semi-Partitioned Reservations” shows that:

○ “usually ≥ 99% schedulable utilization — can be achieved with simple, well-known and 
well-understood, low-overhead techniques (+ a few tweaks).”

○ This work, however, is not applicable for Linux because the workload is static

● D. Casini, A. Biondi, G. Buttazzo, “Semi-Partitioned Scheduling of Dynamic Real-Time Workload: A 
Practical Approach Based on Analysis-Driven Load Balancing.”

○ This paper relaxes the first, to be able to deal with dynamic workload.



Red Hat42

How good is this online semi-partitioned scheduler?
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How does semi-partitioned place tasks?
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Pin as much task as possible
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When it is not possible to pin, it splits a task.
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Voilà!
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Semi-partitioned benefits

● Good points:
○ The majority of problems are reduced to single-core!
○ Less overhead:

■ The heuristics run only when setting attr/affinity/hotplug
■ There is no need to pull tasks, just push!
■ Migrations are bounded to M, for the system!

○ Tasks are mostly pinned to a single CPU!
○ Affinities come for FREE! YAY!
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Semi-partitioned benefits

● Bad point:
○ Average response time is higher! 

● Things we need to “think more”
○ The - real - admission control must to run in the kernel
○ The design of the scheduler considers implicit deadline - likewise the current… so.
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Let us know what else you need!
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THANK YOU

plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos
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twitter.com/RedHatNews
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