e‘ Red Hat

) S ant’ Anna

Breeet / School of Advanced Studie

4 == UNIVERSIDADE FEDERAL

: : DE SANTA CATARINA
Enterprise Linux

Automata-based Formal Analysis and
Verification of the Real-Time Linux Kernel

Candidate: Supervisors:
Daniel Bristot de Oliveira Romulo Silva de Oliveira
Tommaso Cucinotta

Introduction

Introduction

Introduction

Real-Time Linux vs Real-Time theory

Experimental vs Analytical

C

Introduction

Real-Time Linux vs Real-Time theory

Complex synchronization vs simple models

C

Qc

How can we fill the gap between
real-time Linux and real-time theory?

Introduction

Describing real-time properties of

_inux as in theory!

Introduction

Introduction

Linux is complex

Lots of contexts
Lots of hacks
Lots of information

Fast pacing

Red Hat

Panic!

rebooting...

What does real-time mean?

Introduction

Real-time definition

Real-time systems are computing systems where the correct
behavior does not depend only on the logical behavior,

but also on the timing behavior.

Introduction

Real-time Linux

un

To remove “" from real-time Linux...

We need to show that Linux has a correct

logical and timing behavior.

Background

An informal? try

rruey unmme legry (wileyonlinelibrary.com). DOI: 10,100 9

Timing analysis of the PREEMPT RT

Daniel Bristot de Oliveira'? and Romulo Silva de Ol

' Department of Automation and Systems, Federal University of Sant Caturma, Fi
2Red Hat, Inc., Brazil

| - SUMMARY

: o described b . .

i real-ume scheduling, tasks ar¢ de;c ?hb: syszem cal- Ui

‘ s in order to prove SChedUIablhtyl ncies caused bY the LS

e ax developers try to lover (e Bk |
_inux do i -

Al h bc
sty task. Althoug s
for the ,hlghesggggr:aythese efforts 1 tWE dlﬁn@gﬁﬂ |

In the theony
ml)hx.‘ll nw
F““ amos, and

Linny resDONSC

1

Using an informal
language, and Informally
enrolled in the PhD.

Published at “Software:
practice and experience.”

Building evidence that |
could do the PhD as a
partial-time student, and

learning.

Red Hat

Background

Timing analysis of the PREEMPT RT Linux kernel

It is the background of the

thesis.
! AR - It was done before the
, W,=383.999us .
6.068us sc, 15.449us official PhD enrolment,
| B 178 545w | but... it is part of the PhD,
| J;=64.574us, ; . C=183937us o
' L : ' ' at least inside our
Sched Sched
Sched Context Context Context 7 Context
wakeup switch in switch out switch in switch out
state=D state=S

Figure 10. Timeline of task pi-839.

The execution time of the system call read() was 191.341 s, which is much greater than 5.609 s,
which was its execution time in the absence of blocking, in the previous example.

95 pi-839 [9] [01] 168.239972371. = immmmmmmmes >

96 pi-839 [91 [01] 168.239972371 do_notify_resume () ({

97 pi-839 [9] [01] 168.240005839 softirg_raise: vec=8 [action=HRTIMER

98 pi-839 [9] [01] 168.240013714 sched_wakeup: comm=ksoftirqgd/l pid=15 \
prio=98 \
success=1 target_cpu=001

99 pi-839 [9] [011] 168.240037487 + 64.696 us } do_notify_resume ()

100 pi-839 [9] [01] 168.240037487 G

101 pi-839 [91 [01] 168:240038795 imrm—mmmees >

102 pi-839 [9] [01] 168.240038795 sys_rt_sigreturn() {

103 pi-839 [9] [01] 168.240045205 6.183 us } sys_rt_sigreturn ()

104 pi-839 [91 [01] 168.240045205 ST

105 pi-839 [91 [01] 168.240047616 e

106 pi-839 [9] [01] 168.240047616 sys_pause () {

107 pi-839 [9] [01] 168.240047925 schedule ()

108 pi-839 [9] [01] 168.240063374 sched_switch: prev_comm=pi \
prev_pid=839 \
prev_prio=9 prev_state=S ==> \

\

next_comm=ksoftirqgd/l next_pid=15
next_prio=98

Red Hat

Background

Timing analysis of the PREEMPT RT Linux kernel

Lessons learned

L L

Pros ~ Cons
e Good level of abstraction e Manual interpretation of the data
e Usage of trace and events e The translation from trace to timeline was
e Lightweight informal, and so prone to ambiguosity
e The timeline format is intuitive e Impossible to verify trace < interpretation

17

Background

Getting formal: formal methods

TT—————

Figure 11 - Example of automaton,

e A collection of mathematical techniques to
rigorously state the specification of a system

e Useful to demonstrate properties of a system

e Remove the ambiguous nature of natural
language

e Enable automatic verification of the system

At this point, Daniel

started attending to

classes about Formal
Methods, Discrete Math,
Discrete Events Systems,

and Formal Verification.

Red Hat

Background

Getting formal: formal models

A model is an abstraction,
removing the unnecessary

details, focusing in a
specific behavior.

Input Output

Input Output
variables variables

Once a satisfactory
model is found, it can be
used instead of the
system.

Red Hat

Background

Automata a formal language

That looked natural for a kernel developer

L b

Formal definition
b 5 G=1{X E,F,x, X } where
‘ X is set of states

Graphical representation

2 E is the finite set of events

F : X xE — Xis the transion function

X, is the initial state

Xm C Xis the set of final states

20

Background

Modeling strategy

The modular approach

S e Instead of modeling the system as a single automaton, the modular approach uses

Figure 11 - Example of automaton.

generators and specifications
o Generators:

m Independent subsystems models
m Generates all chain of events (without control)
o Specification:

Figure 12 — Example of Petri né!

Q g m Control/synchronization rules of two or more subsystems
s C ' m Blocks some events
@ e The parallel composition operation synchronizes the generators and specifications

o Theresult is an automaton with all possible chain of events

21

22

Thesis

Goals and contributions

23

Thesis

Goals of this thesis

Three sub-goals

This thesis proposes the creation of a formal model of the
Linux tasks, including the synchronization primitives that
influence their timing behavior.

This model should
enable the formal verification of the logical behavior of the
system, as well as the formal analysis of its timing behavior.

24

Thesis

Contributions

Three stages

First stage: the formal model
o The methodology
o The model
o Offline verification
Second stage: efficient runtime verification of the logical behavior
o Online runtime verification
o Auto code generation from models
o Can be used in production
Third stage: analysis and measurements of the timing behavior
o Interpretation of the model using academic real-time viewpoint
o Definition of a safe latency bound
o Development of a tool to measure the components of the latency bound

25

Thesis

Contributions

Linux

Trace

Offline RV

Online RV

Variables Analysis
T = Period L=S+E+2%B/T)
S = P4 = Hardware delay
A=Pl1=el1A e3
B=R1=e2A e4 M t
_ o easurements
E=P1-R1=A-B Acd
B=1
E=3

L=S+3+2(1/T)

All the results are available

online here:

Red Hat

26

The PREEMPT_RT thread model

Part [:
The thread model

The PREEMPT_RT thread model

The PREEMPT_RT Thread model
Approach

NO
Informal automaton.dot

knowledge

{ Kernel

)

Does the model

Validation match the trace?

trace.data

27

28

The PREEMPT_RT thread model

Modeling

The PREEMPT_RT thread model

Events

Ty wnHne lerary (wileyonlinelibrary.com), DOIL: 10.1¢ 9

Timing analysis of the PREEMPT RT

Daniel Bristot de Oliveira'? and Romulo Silva de €

' Department of Automation and Systems, Federal University of Santa Caturma, Fi
2Red Hat, Inc., Brazil

' - SUMMARY

Jdels in order to prove Sohed e ltheylatﬁncies caused by the LIS
analytical models . developers try to lower e 1 both seek
T ams, and Linux de : k. Althoug :

- - ohest-priority task. - two different
B iane vesnonse for the ,hlghes;?denc these efforts 10 Wit madels 10 8

In the theory of

29

Based in the Timing
analysis paper, but
improved.

Based also on a daily base

work as a kernel developer
at red hat.

Red Hat

The PREEMPT_RT thread model

Interrupt related events
NMI, IRQ, IRQ control

Automaton event Kernel event Description
hw_local_irg_disable preemptirq:irg_disable Begin IRQ handler
hw_local_irg_enable preemptirg:irg_enable Return IRQ handler
local_irg_disable preemptirg:irg_disable Mask IRQs
local_irg_enable preemptirq:irg_enable Unmask IRQs
nmi_entry irq_vectors:nmi Begin NMI handler
nmi_exit irq_vectors:nmi Return NMI Handler

30

31

The PREEMPT_RT thread model

Scheduling events

Preemption and scheduling

Automaton event

Kernel event

Description

preempt_disable

preemptirqg:preempt_disable

Disable preemption

preempt_enable

preemptirq:preempt_enable

Enable preemption

preempt_disable_sched

preemptirq:preempt_disable

Disable preemption to call the scheduler

preempt_enable_sched

preemptirq:preempt_enable

Enables preemption returning from the
scheduler

schedule_entry

sched:sched_entry

Begin of the scheduler

schedule_exit

sched:sched_exit

Return of the scheduler

sched_need_resched

sched:set_need_resched

Set need resched

32

The PREEMPT_RT thread model

Thread states

Runnable or not runnable? That is the question!

Automaton event

Kernel event

Description

sched_waking

sched:sched_waking

Activation of a thread

sched_set_state_runnable

sched:sched_set_state

Thread is runnable

sched_set_state_sleepable

sched:sched_set_state

Thread can go to sleepable

33

The PREEMPT_RT thread model

Context switch

Two “meta” tasks: the one under analysis and all other

Automaton event

Kernel event

Description

sched_switch_in

sched:sched_switch

Switch in of the thread under analysis

sched_switch_suspend

sched:sched_switch

Switch out due to a suspension of the thread

under analysis

sched_switch_preempt

sched:sched_switch

Switch out due to a preemption of the thread

under analysis

sched_switch_blocking

sched:sched_switch

Switch out due to a blocking of the thread under

analysis

sched_switch_in_o

sched:sched_switch

Switch in of another thread

sched_switch_out_o

sched:sched_switch

Switch out of another thread

34

The PREEMPT_RT thread model

Mutex

Mutual exclusion

Automaton event

Kernel event

Description

mutex_lock

lock:rt_mutex_lock

Requested a RT Mutex

mutex_blocked

lock:rt_mutex_block

Blocked in a RT Mutex

mutex_acquired

lock:rt_mutex_acquired

Acquired a RT Mutex

mutex_abandon

lock:rt_mutex_abandon

Abandoned the request of a RT Mutex

35

The PREEMPT_RT thread model

Read/write lock and semaphore

Read side

Automaton event

Kernel event

Description

read_lock

lock:rwlock_lock

Requested a R/W Lock or Sem as reader

read_blocked

lock:rwlock_block

Blocked in a R/W Lock or Sem as reader

read_acquired

lock:rwlock_acquired

Acquired a R/W Lock or Sem as reader

read_abandon

lock:rwlock_abandon

Abandoned a R/W Lock or Sem as reader

36

The PREEMPT_RT thread model

Read/write lock and semaphore

Write side

Automaton event

Kernel event

Description

write_lock

lock:rwlock_lock

Requested a R/W Lock or Sem as writer

write_blocked

lock:rwlock_block

Blocked in a R/W Lock or Sem as writer

write_acquired

lock:rwlock_acquired

Acquired a R/W Lock or Sem as writer

write_abandon

lock:rwlock_abandon

Abandoned a R/W Lock or Sem as writer

The PREEMPT_RT thread model

Generators

They are mostly basic

kernel operations, in the

way that developers think

about them

nmi_entry schedule_entry

schedule_exit ,
independently.

They can be specialized,

preempt_disable

no_preempt but better not generalize

preempt_enable
them.

preempt

preempt_disable_sched

preempt_enable_sched

37
Red Hat

38

The PREEMPT_RT thread model

The generators!

Independent operations

A
]
~
(]
(7]

Name

GO1Sleepable or runnable
GO02 Context switch

GO3 Context switch other thread
GO04 Scheduling context
GO5 Need resched

GO6 Preempt disable

GO7 IRQ Masking

GO8 IRQ handling

GO9S NMI

GI10 Mutex

G11 Write lock

G12 Read lock

W W WNNNW=NNNDNN

<
)
2
%)

DADMNNNMNNDIDM=NN-IMW

Transitions

OO ONNNDIMN=NNNDIMNW

The PREEMPT_RT thread model

We tried to keep the

[[] [
SpeCIflcatlonS specifications as simple as
possible, trying to model a
single behavior per

schedule_entry schedule_entry
schedule_exit schedule_exit specification.

preempt_disable_sched

local_irq_disable
preempt_enable_sched

We also tried to keep a

logical interpretation for

each specification, like

* " n
necessary” and

oo “sufficient” conditions.

| preemption_slecpable ra—

" sched_set_state_sleepable \
T ohed_switch_preempt
- scl

-, J__sched_waking
sche n
__preempt_disable_sched

¥
.¢\‘ not_running [|—Sched_switch_in » running

e

T
__sched_switch_in preemplioa_to_runnsble

sched_need_resched
__ sched_switch_preempe

39 S

Red Hat

The PREEMPT_RT thread model

Specifications

Relation among operations (continue..)

40

Name States Events Transitions
S01Sched in after wakeup 2 5 6
S02 Resched and wakeup sufficiency 3 10 18
S03 Scheduler with preempt disable 2 4q 4q
S04 Scheduler doesn't enable preemption 2 6 6
S05 Scheduler with interrupt enabled 2 4q 4q
S06 Switch out then in 2 20 20
S07 Switch with preempt/irq disabled 3 10 14
S08 Switch while scheduling 2 8 8
S09 Schedule always switch 3 6 6
S10 Preempt disable to sched 2 3 4
S11 No wakeup right before switch 3 5 8
S12 IRQ context disable events 2 27 27
S13 NMl blocks all events 2 34 34
S14 Set sleepable while running 2 6 6
S15 Don't set runnable when scheduling 2 4 4
S16 Scheduling context operations 2 3 3

The PREEMPT_RT thread model

Specifications

Relation among operations

Name States Events Transitions
S$17 IRQ disabled 3 4 4
S18 Schedule necessary and sufficient 8 9 27
S19 Need resched forces scheduling 7 25 53
S20 Lock while running 2 16 16
S21Lock while preemptive 2 16 16
S22 Lock while interruptible 2 16 16
S23 No suspension in lock algorithms 3 10 19
S24 Sched blocking if blocks 3 10 20
S25 Need resched blocks lock ops 2 15 17
S26 Lock either read or write 3 6 6
S27 Mutex doesn't use rw lock 2 n n
528 RW lock does not sched unless block 4 n 22
S$29 Mutex does not sched unless block 4 7 16
S30 Disable IRQ in sched implies switch 5 6 10
S31Need resched preempts unless sched 3 5 12
S32 Does not suspend in mutex 3 5 1
S33 Does not suspend in rw lock 3 8 16

4

42

The PREEMPT_RT thread model

The model!

Composition of generators and specifications

The final model has:
o 9017 states
o 20103 transitions
It would be impossible to model it directly
Using the modular approach, the final model is composed of:
o 34 events
o 12 generators
o 33 specifications
m The most complex module (a specification) has eight states!

The PREEMPT_RT thread model

Verification: perf task_model

The perf task_model extension
was developed to do the
automatic verification

e [=
L | X report
gl [re] start . [re] start ‘
All'in user-space

- raw tracepoint . That was a big problem of the

Y “timing analysis” of the
event > previous paper: there was no

:runthe way to compare the kernel

N - accept/deny event «...;automaton against our reasoning
output string

perf binary

43

Red Hat

The PREEMPT_RT thread model

perf task_model output

Automatically runs the automaton, based on the kernel trace

1: Reference model: isorc.dot
2: +----> +=thread of interest - .=other threads
3: | +-> T=Thread - I=IRQ - N=NMI
4: | |
5: 1 | TID | timestamp | cpu | event | state | safe?
6: . T 8 436.912532 [600] preempt_enable -> qo safe
7: T 8 436.912534 [000] local_irq_disable -> q8102
8: . T 8 436.912535 [000] preempt_disable -> q19421
9: T 8 436.912535 [000] sched_waking -> q99
10: T 8 436.912535 [000] sched_need_resched -> q14076
11: . T 8 436.912535 [000] local_irq_enable -> q1965
- 12: . T 8 436.912536 [600] preempt_enable -> q12256
= 13: T 8 436.912536 [000] preempt_disable_sched -> q18615,q23376
14: . T 8 436.912536 [000] schedule_entry -> q16926,q17108,q2649
15: T 8 436.912537 [000] local_irq_disable q11700,q14046,q21391
16: . T 8 436.912537 [600] sched_switch_out_o q10337,q20018,q21933
17:. . T 8 436.912537 [000] sched_switch_in q10268,q20126
18: + T 1840 436.912537 [000] local_irqg_enable q20036
19: + T 1840 436.912538 [000] schedule_exit -> g21033

44

45

The PREEMPT_RT thread model

Runtime verification of the kernel

Even better than we expected

By modeling the expected behavior, we can catch cases in which the kernel

does not behave as expected

o We found three problems on kernel
m One unexpected call to schedule()
e Schedule called in vain
o Resulted in a kernel patch
m Locking correctness
e A scheduling while in atomic in the single-core case

m Perf & Ftrace losing events
e A problem in the trace recursion control

The PREEMPT_RT thread model

A Thread Synchronization Model for the PREEMPT_RT Linux Kernel

Lessons learned

Pros

e Formal model
e Automatic cross-verification
e Automatais simple enough to avoid

modeling problems
o We often faced state explosion but made it

e The format was well received by Linux

kernel community

46

C

Cons

e The verification uses too much resources

o GBs of data per sec

e Offline
o No actions can be taken during a problem
e |t shows the bound of the scheduling
latency, but it is only logical and too

formal!

Part Il
Verifying the logical behavior

48

Online Runtime Verification

Efficient runtime verification for the Linux Kernel
Approach

. generation

Compile
and
load

49

Online Runtime Verification

Model

one
ga

Code
generation

Code generation

dot2c

We develop the dot2c¢ tool to translate the model into code
o Itis unpractical to thing about coding a model with 20k+ states
It is a python program that has one input:
o Anautomaton model in the .dot format
m Itisanopen format (graphviz)

Supremica tool exports models with this format

Online Runtime Verification

Code generation
WiP Example

Wakeup in preemptive model (WiP):

sched_waking

preempt_disable
preempt_enable

—{ preemptive non_preemptive

Code generation:

[bristot@t460s dot2c]$./dot2c wakeup_in_preemptive.dot

50

Online Runtime Verification

Model

.dot Code

‘ generation

51

Code generation

Automatonin C

enum states § sched_waking
preemptive =0,
non_preemptive,
state_max

17 - preempt_disable
—| preemptive preempt_enable

non_preemptive

enum events §{
preempt_disable = O,
preempt_enable,
sched_waking,
event_max

5

struct automaton §
char *state_names[state_max];
char *event_names[event_max];
char function[state_max][event_max];
char initial_state;
char final_states[state_max];

Online Runtime Verification

Model

.dot Code

‘ generation

52

Code generation

Automatonin C

enum states § sched_waking
preemptive =0,
non_preemptive,
state_max
17 - preempt_disable
—| preemptive preempt_enable

non_preemptive

enum events §{
preempt_disable = O,
preempt_enable,
sched_waking,
event_max

5

struct automaton aut = §
.event_names = { "preempt_disable", "preempt_enable", "sched_waking" },
state_names = { "preemptive”, "non_preemptive" },

Ffunction = §

{ non_preemptive, -1, -11,

i -1, preemptive, non_preemptive },
2

.initial_state = preemptive,
final_states={1,01%

53

Online Runtime Verification

Compile
and
load

Monitor
dot2c

Interprets the kernel events, using the model

Built as a kernel module
o Processing the events synchronously with the kernel execution

Set up instrumentation:
o Hooks to kernel events, e.g., tracepoints, functions,...
o Waits for the initial condition

Verifies if a given kernel event is accepted by the model
o If an error occurs, actions can be taken in the current state of the system
m Stacktraces
m Printvariables
m Save a memory dump...

Online Runtime Verification

54

Compile
and
load

—)

Monitor

Main function: process event

char process_event(struct verification *ver, enum events event)

i

int curr_state = get_curr_state(ver);
int next_state = get_next_state(ver, curr_state, event);

if (next_state !=NULL) {
set_curr_state(ver, next_state);

debug("%s -> %s = %s %s\n",
get_state_name(ver, curr_state),
get_event_name(ver, event),
get_state_name(ver, next_state),
next_state ? "": "safe!");

return true;

§

error("event %s not expected in the state %s\n",
get_event_name(ver, event),
get_state_name(ver, curr_state));

stack(0);

return false;

Online Runtime Verification

55

Compile
and
load

—)

Monitor

Main function: in details

char *get_state_name(struct verification *ver, enum states state) {
return ver->aut->state_names[state];

char *get_event_name(struct verification *ver, enum events event) {
return ver->aut->event_names[event];

char get_next_state(struct verification *ver, enum states curr_state,
enum events event) {
return ver->aut->function[curr_state][event];

char get_curr_state(struct verification *ver) {
return ver->curr_state;

void set_curr_state(struct verification *ver, enum states state) {
ver->curr_state = state;

Online Runtime Verification

Monitor

Main function: in details

char *get_state_name(struct verification *ver, enum states state) { Al operations are O(])!
return ver->aut->state_names[state];

Code | !

.h Combile char *get_event_name(struct verification *ver, enum events event) {
azd return ver->aut->event_names[event];
load 5
C # char get_next_state(struct verification *ver, enum states curr_state,

enum events event) {
return ver->aut->function[curr_state][event];

char get_curr_state(struct verification *ver) {
return ver->curr_state;

void set_curr_state(struct verification *ver, enum states state) § Only one variable to keep the state!
ver->curr_state = state;

5 & RedHat

56

57

Online Runtime Verification

Instrumentation

Running the verification

Kernel module is loaded to a running kernel
o While no problem is found:
m Either print the execution of all events in the trace buffer
m Orrunsilently
If an unexpected transitions is found:
o Print the error on trace buffer
o Take any action

Online Runtime Verification

Error output

A real one
bash-1157 [083]2.. 191.199172: process_event: non_preemptive -> preempt_enable = preemptive safe!
bash-1157 [083] dN..5.. 191.199182: process_event: event sched_waking not expected in the state preemptive

bash-1157 [©803] dN..5.. 191.199186: <stack trace>
=> process_event
__handle_event
ttwu_do_wakeup
try_to_wake_up

irg_exit
smp_apic_timer_interrupt
apic_timer_interrupt
rcu_irqg_exit_irgson
trace_preempt_on
preempt_count_sub
_raw_spin_unlock_irqrestore)
__down_write_common , preempt_disable ,
anon_vma_clone — preemptlve preempt_enable non_preemptlve
anon_vma_fork
copy_process.part.42

_do_fork

do_syscall_64
entry_SYSCALL_64_after_hwframe

V V.V V V VYV

sched_waking

vV V

\Y

\%

V V. V VvV V

L 1 1 U | 1 VI 1 Y | 1 1 N | T | I 1 Y I | I |
v

v

Online Runtime Verification

Kernel bug report

59

LKML.ORG

Messages in this thread

« First message in thread
= Daniel Bristot de Oliveira
« Daniel Bristot de Oliveira
« Peter Zijlstra
» Joel Fernandes
« Steven Rostedt
» Daniel Bristot de Oliveira
» Daniel Bristot de Oliveira
« Peter Zijlstra
« Daniel Bristot de Oliveira
« Peter Zijlstra
« Joel Fernandes
« Daniel Bristot de Oliveira
« Peter Zijlstra
 Daniel Bristot de Oliveira

* & PO
[lkml] [2019] [May] [28] [lasti00] LESH
Views: [wrap] [headers] [forward]
From Daniel Bristot de Oliveira <>
Subject [RFC 0/3] preempt_tracer: Fix preempt_disable tracepoint
Date Tue, 28 May 2019 17:16:21 +0200

While playing with the model + working in a fix for the task
context & trace recursion, I ended up hitting two cases in which the
preempt_disable/enable tracepoint was supposed to happen, but didn't.

There is an explanation for each case in the log message.

This is an RFC exposing the problem, with possible ways to fix it.
But I bet there might be better solutions as well, so this is a real
RFC.

Daniel Bristot de Oliveira (3):
softirq: Use preempt latency stop/start to trace preemption
preempt_tracer: Disable IRQ while starting/stopping due to a
preempt_counter change
preempt_tracer: Use a percpu variable to control traceble calls

kernel/sched/core.c | 66 +++++++itttttitttttttttttttttttttto-oo-oooo--
kernel/softirq.c | 13 +4+44-----
2 files changed, 55 insertions(+), 24 deletions(-)

2.20.1

Last update: 2019-05-28 17:17 [W:0.143 / U:2.832 seconds]
©2003-2020 Jasper Spaansjhosted at Digital Ocean and TransIP|Read the blog|Advertise on this site

fit LKML: Daniel Bristotde © x

& - C & lkmlorg/lkml/2019

Y

A problem with tracing
subsystem was reported
using this model’s module.

Some
preempt_disable/enable
events missing.

Problem was reported and

discussed.

Red Hat

Online Runtime Verification

2500 _% atidy _““j?"-uos/s, More Is Better
rm . B ER v
2000
1500 -
1000
500
as-is SWA trace
Socket Activity Context Switching
! i € Bogo Ops’s, More
2500000 f
2333154
2000000 f
1500000 7
1000000 03420
500000
o i as-is SWA
WA trace
60

* 840

480 +

320 +

Online Runtime Verification

Performance evaluation

Setup
" ez 201 - ml’
N e Two benchmarks
o i I o Throughput using the Phoronix Test Suite
R e m Low kernel activity

m High kernel activity

ot Activty ContextSwicring o Scheduling latency
R m Cyclictest
e Base of comparison
oz o as-is: the system without any verification or trace
i o model: a sample model
o trace: tracing (ftrace) the same events used in the verification

m Only trace! No collection or interpretation

61

Online Runtime Verification

Performance evaluation

High kernel activation (SWA monitor)

Crypto CPU Stress Memory Copying
Bogo Ops/s, More Is Better Bogo Ops/s, More Is Better Bogo Ops/s, More s Better

1000 - 2500 800 -

800 - 2000 640 -

600 - 1500 -+ 480 -

400 - 1000 A 320

200 A

500 - 160 -

as-is SWA trace as-is SWA trace as-is SWA trace

62

Online Runtime Verification

Performance evaluation

Low kernel activation (SWA monitor)

Socket Activity Context Switching System V Message Passing
Bogo Ops/s, More Is Better Bogo Ops/s, More Is Better Bogo Ops/s, More Is Better
1500 2500000 - 2000000 + — = — — = — = — = — — — — — — -
1200 2000000 - 1600000 -
900 1500000 - 1200000 -
600 1000000 - 800000 -
300 500000 - = 619639 & 400000 -
as-is SWA trace as-is SWA trace as-is SWA trace

63

64

Online Runtime Verification

Thread activations

800000

700000

600000

500000

400000

300000

200000

100000

Performance evaluation

Scheduling latency experiment (NRS monitor)

I

I

I

|

I I

I

I

trace
NRS
as-is

10

20

30

40 50
Latency in microseconds

60

70

80 90

Online Runtime Verification

Remarks

|| ‘|I|||' | |

ket Activity

Context Switching

2500000

Bog
b y
2000000
1500000
1000000 03420
500000
as-is SWA

65

Trace is enable in production systems

o So this method can be used on production as well
This is useful mainly for debugging problems:

o Model the expected behavior

o Wait for an unexpected event to happen

We already have content for a journal extension

There is the interest of other working groups on it
o Mainly for safety-critical systems and ClI
o We are trying to model other subsystem
o | am also working with other formalism

The experiments and
proof of concept code are
available here:

Red Hat

Part llI:
Timing behavior analysis

67

Demystifying the real-time Linux scheduling latency

Real-Time Linux vs Real-Time theory

Linux approach

Linux was adapted to become a RTOS
PREEMPT_RT: De facto standard
Evaluated (mainly) with cyclictest
Cyclictest:

o Practical: lightweight and out-of-the-box
o Itisa“black-box” test
o No demonstration

o Does not provide evidence of “root-cause”

& RedHat

68

Demystifying the real-time Linux scheduling latency

Demystifying the Real-Time Linux Scheduling Latency

Formal specification

Approach

Scheduling latency bound

L' < maz(Dsr, Dporn) + Dpuse + Dy

Proof. The lemma follows by Boting that cume (el
exclusive and cover all the possibie s o

right-hand sides of Equations 2 3 & st

TheoremBsummmlhrmb“&

» Theorem 8. The scheduling lutency sapemnund
the least positive value that fulills the fullwing

L = maz(Dsr, Dpoin) + Drass + Drsn %

Measurement and analysis

Demystifying the real-time Linux scheduling latency

From formal specification to synchronization rules

Formally backed natural language arguments

L L

e Generators

o Translated into a set of operations

e Specifications

o Translated into a set of synchronization rules

69

Demystifying the real-time Linux scheduling latency

Scheduling latency definition

The scheduling latency experienced by an arbitrary thread T is

e the longest time elapsed between the time A in which any job of 1
becomes ready and with the highest priority

e and the time F in which the scheduler returns and allows T to execute
its code

70

From the first necessary
condition to set need
resched, to the the last
action after the

scheduling, which is

enabling preemption after

the return from
__schedule().

Red Hat

Demystifying the real-time Linux scheduling latency

Interference and blocking The scheduling latency in

this paper refers to the
delay between the
notification of a new
The scheduling latency is caused by MIEIIESE IS Baee, e
point in which this thread

starts running its own
e Blocking from the current (and so lower) priority

thread

code.

The highest priority thread

e Including scheduling can belong to any

scheduler: the analysis is

e Interference from IRQs and NMI scheduler independent.

71

Red Hat

72

Demystifying the real-time Linux scheduling latency

Blocking bound

From the specification that bounds the block to a timeline

N

T~IRC.'I disable

Preempt disable

t IRQ enable —> tIRQ disable — EV3
Sieetibel 3z Preempt enable from sched—> EV7
Preempt disable to sched —> EV1 Schedule return—> EV6

Preempt enable IRQ enable —> EV5
Context switch—> EV4

Demystifying the real-time Linux scheduling latency

Timeline and cases

All possible cases

i-b

Preempt enable from sched—> EV7

—Schedule return—> EV6

IRQ enable—> EV5

Context switch—> EV4

Schedule call—> EV2 thQ disable — EV3

Preempt disable to sched—> EV1

Preempt enable

— IRQ enable

A

2
o
2
393
%
2
X

2
2
2

ble

“IRQ disable

1sa

A

1Preempt d

73

Demystifying the real-time Linux scheduling latency

Blocking variables

e Dproip: preemption or interrupts disabled to

postpone the scheduler In the model, the

e Dpraie: preemption and interrupts enabled, as a preemption control is

. .) specialized into two
transient state from poid to psd; when scheduling

different operations: to

a new highest priority thread postpone the scheduler

e Dpsb: preemption disable to schedule (the most known
e Dsrt: delay caused by the scheduling tail; the “non behavior) or to protect the

return” point in which a new arrived task will have to execution of the

wait for the current scheduling operation to finish —seiseiiz() unelen e

i recursion.
before scheduling

74

Red Hat

Demystifying the real-time Linux scheduling latency

Timeline and cases

Variables in the the timeline

A Dpoid . Dpsd F
Dpaie | Dst

A A t Y >
“IRQ disabl ~ IRQ enabl IRQ disable —> EV3
sante enavte Schedule c.all—> EV2 san’e Preempt enable from sched—> EV7
—Preempt disable to sched—> EV1 L Schedule return—> EV6
Preempt disable _Preempt enable —IRQ enable—> EV5

Context switch—> EV4

75

76

Demystifying the real-time Linux scheduling latency

Timeline and cases

IRQ and NMl interference

|| Thread | | Scheduling (Thread) || HardiR@ [NMi Preemption disabled \\\Y IRQ disabled

NM (L) I

N

N

Dpsd

| Dst

LIRG) disable

Preempt disable

— IRQ enable Schedule call—> EV2 IRQ disable — EV3

Preempt disable to sched—> EV1
Preempt enable

} >

LPreempt enable from sched—> EV7
—Schedule return—> EV6

~IRQ enable—> EV5

Context switch—> EV4

Demystifying the real-time Linux scheduling latency

And the scheduling latency bounds to:

The bound considers all
possible cases. Note that
the Latency L is present in

both sides of the equation.

So, L is bounded by the

L = max(DsT, Dpoip) + DPaAIE + Dpsp + INMI(L) + I'RO(L) e

fulfilling the equation (like
on RTA).

77

Red Hat

Demystifying the real-time Linux scheduling latency

Interrupts are workload dependent

This topic was heavily

e Instead of proposing “the best” interrupt discussed at the Real-time
Micro Conference (inside

Linux Plumbers) in 2019,

more info here:

characterization, the rtsl reports the scheduling
latency based on some well-known

characterizations:
o Nointerrupt
o Worst single interrupt
o Single occurence of all interrupts
o Sporadic
o Sliding window (Author’s preferred)
o Sliding window with oWCET

78

Red Hat

79

Demystifying the real-time Linux scheduling latency

A practical scheduling latency estimation tool

Method and challenges

e Based on the latency bound
e The latency bound is based on the model

e The modelis based on tracing of events
o but high frequency events
m hundreds MB/sec/CPU
e Challenges:
o To minimize the (runtime) overhead

o Work out-of-the-box

Demystifying the real-time Linux scheduling latency

rt_sched_latency (rtsl)

Based on perf

Works in two phases:

The record mode

(Ke rnel , 4 perf script) AT e Analysis saves the trace data;
ISL$22¥ ’ record rtsl report rtsl —
“® = buffer — The report mode
5 i perf.data process the trace
o = -
] > - and does the
£ 3 analysis.
- - -

80

Red Hat

Demystifying the real-time Linux scheduling latency

tracepoints

81

record phase

Low overhead trace recording

C

perf.data PY

Filters the high frequency trace

o Doingin-kernel processing
For blocking variables

o Reports only the discover of new max values
For IRQ and NMI

o Reports one event for each occurrence
Discounts the interference

o e.g., IRQ interference on a poid

82

Demystifying the real-time Linux scheduling latency

report phase

Low overhead trace recording

L L

e After the capture, analyzes the trace.

o Allin user-space.

>
5
=,
<
2
wn

perf script

e e e Most of the analysis is done in python

o Easy to extend

perf.data

e Two outputs

Chart

o Textual: good for debug

|m||| o Chart: good comparisons (and papers :-))
' e Does a per-cpu scheduling latency analysis

o Using different IRQ/NMI characterization

& RedHat

Demystifying the real-time Linux scheduling latency

rtsl report output

Textual output

Interference Free Latency:
paie is lower than 1 us -> neglectable S
; : continuing....
latency = max(poid, dst) + paie + psd & iine windous
42212 = max(22510, 19312) + 0 + 19702 & ;
, Window: 42212
Cyclictest: NMI : 0
Latency = 27000 with Cyclictest 33: 16914
No Interrupts: 35: 14588
Sporizzi?cy = 42212 with No Interrupts 936 50728
INT: OWCET OMIAT . 226 3299
Window: 97741
WAL 9 0 236: 21029 <- new!
33: 16914 257130 Witdews 98(.)42 '
35: 12913 1843 <- oWCET > oMIAT) ;
236: 20728 1558 <- OWCET > oMIAT Converged:
546 3299 1910391 Latency = 98042 with Sliding Window
Did not converge.

83

& RedHat

84

Demystifying the real-time Linux scheduling latency

Em Cyclictest

400

IEE No Interrupts

rtsl report output

B Worst Single Interrupt

Chart output

B Single (Worst) of Each Interrupt

B Sliding Window

Sliding Window with oWCET

350 -
S 300 -

0

4

8

Demystifying the real-time Linux scheduling latency

BN Nointerrupts mem wors Singgie wae

1.a) Idle

2.a) 15 min.

26 Workstation expet jments SINg

B IS
D~+h svstellls 3385

85

- e

Experiments

Scheduling latency measurements on two systems:
o workstation: eighth CPUs

o server: twelve CPUs server
Experiments:
o Single-core
m Different duration
m Different workload

o Multi-core

Running in parallel with cyclictest
Note: The goal of the experiments is to

demonstrate the tool, not to define worst values.

The experiments passed

by the artifact evaluation!

Red Hat

86

Demystifying the real-time Linux scheduling latency

I Cyclictest

Latency in microseconds

Latency in microseconds

Single-core experiments

B No Interrupts B Worst Single Interrupt

I Single (Worst) of Each Interrupt

B Sliding Window

Sliding Window with oWCET

180 180 180
160 160 160
140 140 140
120 - 120 120 -
100 100 A 100

80 - 80 - 80 -

60 - 60 - 60 -

40 40 - 40 -

20 - 20 - 20 -

0- 0- 0

1.a) ldle 1.b) CPU Intensive 1.c¢) I/O Intensive

180 180 180
160 160 f 160 f
140 140 467 140 801
120 A 120 - 120 -
100 100 A 100

80 - 80 - 80 -

60 - 60 - 60 -

40 40 - 40 -

20 - 20 - 20 -

0- 0- 04

2.a) 15 min.

2.b) 60 min.

2.c) 180 min.

87

Demystifying the real-time Linux scheduling latency

I Cyclictest

B No Interrupts B Worst Single Interrupt

Multicore experiments

B Single (Worst) of Each Interrupt

B Sliding Window

Sliding Window with oWCET

& 300 300 300
©
C
S 2501 250 - 250 - '
8 2944
O 200 - 200 - 200 -
L
€ 150 150 - 150 -
£
>100 - 100 A 100 1
(&)
C
3 s0- I II IIIIIIIIlIlll“l 50 A I IIIIIIIIIIIIIIII 50
©
|
0- 0- 0-

3.a) Workstation Idle

3.b) Workstation CPU Intensive

3.c) Workstation I/O Intensive

0

4 8 0 4 8
4.a) Server 1/O Intensive

1

1900

0 4 8 0 4

8

Demystifying the real-time Linux scheduling latency

Remarks

--------- a TL an

- -

2.a) 15 min.

26 Workstat jon experiments: S5%

n I8
D~+h qusiellld 235

88

The PREEMPT_RT preemption model is deterministic, and
the scheduling latency is bounded
The approach presented in this thesis opens the door for a

new set of real-time analysis for Linux

o The analytical interpretation of Linux thread model developed
in this paper untight the Linux complexity, enabling the

reasoning at a more sophisticated level
Even though this rtsl finds higher scheduling latency values,
they are still low enough to justify Linux as RTOS on the
current scenarios

rtsl is practical, and resolves many problems of cyclictest.

o E.g., it can be used to point to the root causes of the latency
o But still can, and should, be improved

m Both with code, and other analysis.

For more information

about the paper, like

source code, other
comments, Q&A, check its

companion page!

Red Hat

89

Automata-based Formal Analysis and Verification of the Real-Time Linux Kernel

Results

90

Automata-based Formal Analysis and Verification of the Real-Time Linux Kernel

Papers

e D.B.de Oliveira, R. S. de Oliveira, T. Cucinotta, L. Abeni. Automata-Based

Modeling of Interrupts in the Linux PREEMPT RT Kernel, in Proceedings of
the 22nd IEEE International Conference on Emerging Technologies And Factory
Automation (ETFA 2017), September 12-15, 2017, Limassol, Cyprus.

e D.B.de Oliveira, T. Cucinotta, R. S. de Oliveira. Modeling the Behavior of

Threads in the PREEMPT_RT Linux Kernel Using Automata, in Proceedings
of the International Workshop on Embedded Operating Systems (EWILI 2018),
October 10th, 2018, Torino, Italy.

e D.B.de Oliveira, R. S. de Oliveira, T. Cucinotta. Untangling the Intricacies of

Thread Synchronization in the PREEMPT RT Linux Kernel, in Proceedings of
the 22nd IEEE International Symposium on Real-Time Distributed Computing
(IEEE ISORC 2019), May 7-9, 2019, Valencia, Spain

Main topic

One workshop
Four conferences

One journal

All available here:

Red Hat

91

Automata-based Formal Analysis and Verification of the Real-Time Linux Kernel

Papers

e D.B.De Oliveira, T. Cucinotta, R. S. De Oliveira. Efficient formal verification

for the Linux kernel, 17th International Conference on Software Engineering and
Formal Methods (SEFM 2019), September 16-20th, 2019, Oslo, Norway.

e D.B.DeOliveira, R.S. De Oliveira, T. Cucinotta. A thread synchronization

model for the PREEMPT_RT Linux kernel, Elsevier Journal of Systems
Architecture (JSA), Vol. 107, August 2020.

e D.B.De Oliveira, D. Casini, R. S. De Oliveira. T. Cucinotta. Demystifying the

Real-Time Linux Scheduling Latency, in the Proceedings of the 32th
Euromicro Conference on Real-time Systems (ECRTS), July 7-10th, 2020,
Modena, Italy.

Main topic

Journal = Consolidated

results

SEFM = Lost the fear of

FM community

ECRTS = Atop RT
conference explaining the
math behind the
PREEMPT RT (my goal)

Red Hat

92

Automata-based Formal Analysis and Verification of the Real-Time Linux Kernel

Other papers

D. B. De Oliveira, R. S. De Oliveira (2016). Timing analysis of the PREEMPT RT Linux
kernel, Softw. Pract. Exper., 46: 789- 819. doi: 10.1002/spe.2333.

K. P.Silva, L. F. Arcaro, D. B. de Oliveira, R. S. de Oliveira. An Empirical Study on the
Adequacy of MBPTA for Tasks Executed on a Complex Computer Architecture with
Linux, in Proceedings of the 23rd IEEE International Conference on Emerging Technologies And
Factory Automation (ETFA 2018), September 4th - 7th, 2018, Torino, Italy.

D. B. de Oliveira, D. Casini, R. S. de Oliveira, T. Cucinotta, A. Biondi and G. Buttazzo. Nested
Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux, in
Proceedings of the International Real-Time Scheduling Open Problems Seminar (RTSOPS
2018), co-located with the 30th Euromicro Conference on Real-Time Systems (ECRTS 2018).
July 3, 2018, Barcelona, Spain.

D. B. De Oliveira, D. Casini, R. S. De Oliveira. T. Cucinotta. Demystifying the Real-Time
Linux Scheduling Latency (Artifact), in the Proceedings of the 32th Euromicro Conference
on Real-time Systems (ECRTS), July 7-10th, 2020, Modena, ltaly.

Other papers

One conference as third

author

One workshop

One journal in the informal
part of the Ph.D.

One artifact evaluation

Red Hat

Automata-based Formal Analysis and Verification of the Real-Time Linux Kernel

Linux related conferences

e 18 talks at Linux/Open Source related conferences

o CZ4,CA4,FR3,PT2 UK1,US1BR1ITT, Onlinel.
o Mostly about the topics of the thesis
o Butalso about other RT and trace topics

e lorganized:

o Real-time micro conference at Linux Plumbers 2019
o Real-time Linux Summit 2019

o Real-time micro conference at Linux Plumbers 2020...
o Real-time Linux Summit 2020...

e Helpedon:

o Scheduling micro conference at Linux Plumbers 2019
o Scheduling micro conference at Linux Plumbers 2020

93

Slides of my talks are all

here:

Red Hat

Automata-based Formal Analysis and Verification of the Real-Time Linux Kernel

Other academic activities

Slides of my talks are all

e Classes: here:

o Real-time Linux at Real-time course (UFSC)
o Formal verification at Component-based software design course (SSSUP)

e Managed the cotutela agreement
o Lots of work to merge IT/BR Ph.D. rules
e Collaborations with other research groups

o Boston University - Unikernel
o ETH Zurich - FM

e Reviewed papers for SBESC
e PC of EWiLiand (postponed to 2021) RT Cloud Workshop inside ECRTS

e Participated in a European project submission
o Ericsson/Red Hat/Uni Torino/Lund University/Sant/Anna

o Not as a student but as Red Hat (industrial partner)

94

Red Hat

Automata-based Formal Analysis and Verification of the Real-Time Linux Kernel

Final words

S — o i an

For more information

e Theidea of using formal methods to explain Linux was risky: about the thesis, like

N N interrupts BN Worst Singie e g

. . source code, other
o | touched state-explosion many times

o Kernel generates GB of events per second comments, Q&A, check its

companion page!

e The simplicity of automata was the key factor

A ..l o It was simple on purpose

: e The RV results were WAY better than expected

e The Latency paper was the goal and, with that in a top
conference, | could finally sleep in peace with myself

e Thisisjust the beginning, because there is a lot of work to

be done

2.3)15min.

26 Workstation expet et TN

e Thanks Tommaso, Romulo, Casini, Luca and Clark

run the FeeS
D ~+h avstellls 255

95

Red Hat

Questions?

Automata-based Formal Analysis and Verification of the Real-Time Linux Kernel

96

Red Hat

That is all for today, thanks for watching, and have a nice day!

UNIVERSIDADE FEDERAL

pJ
Sant Anna DE SANTA CATARINA

School of Advanced Studies — Pisa

e‘ Red Hat
Enterprise Linux

Thanks!

