
Candidate:
Daniel Bristot de Oliveira

Automata-based Formal Analysis and
Verification of the Real-Time Linux Kernel

1

Supervisors:
Rômulo Silva de Oliveira

Tommaso Cucinotta

Real-Time Linux

Introduction

2

“Real-Time” Linux

Introduction

3

Real-Time Linux vs Real-Time theory

4

Experimental vs Analytical

Introduction

Real-Time Linux vs Real-Time theory

5

Complex synchronization vs simple models

Introduction

How can we fill the gap between
real-time Linux and real-time theory?

6

Introduction

Describing real-time properties of
Linux as in theory!

7

Introduction

Easier said than done :-)

8

Introduction

9

Linux is complex
- Lots of contexts

- Lots of hacks

- Lots of information

- Fast pacing

- ...

Introduction

10

Panic!

11

rebooting...

What does real-time mean?

Introduction

12

Real-time definition

13

Introduction

Real-time systems are computing systems where the correct

behavior does not depend only on the logical behavior,

but also on the timing behavior.

Real-time Linux

14

Introduction

We need to show that Linux has a correct

logical and timing behavior.

To remove “” from real-time Linux...

15

An informal2 try

Background

Using an informal
language, and Informally

enrolled in the PhD.

Published at “Software:
practice and experience.”

Building evidence that I
could do the PhD as a

partial-time student, and
learning.

16

Timing analysis of the PREEMPT RT Linux kernel

Background

It is the background of the
thesis.

It was done before the
official PhD enrolment,

but... it is part of the PhD,
at least inside our ❤.

Timing analysis of the PREEMPT RT Linux kernel

17

Lessons learned

Pros

● Good level of abstraction

● Usage of trace and events

● Lightweight

● The timeline format is intuitive

Cons

● Manual interpretation of the data

● The translation from trace to timeline was

informal, and so prone to ambiguosity

● Impossible to verify trace ⇔ interpretation

Background

Background

Getting formal: formal methods

18

At this point, Daniel
started attending to
classes about Formal

Methods, Discrete Math,
Discrete Events Systems,
and Formal Verification.

● A collection of mathematical techniques to

rigorously state the specification of a system

● Useful to demonstrate properties of a system

● Remove the ambiguous nature of natural

language

● Enable automatic verification of the system

Background

Getting formal: formal models

19

A model is an abstraction,
removing the unnecessary

details, focusing in a
specific behavior.

Once a satisfactory
model is found, it can be

used instead of the
system.

Automata a formal language

20

That looked natural for a kernel developer

Graphical representation Formal definition

G = {X, E, F, x0, Xm}, where

X is set of states

E is the finite set of events

F : X ｘE ➝ X is the transion function

x0 is the initial state

Xm ⊆ X is the set of final states

Background

Modeling strategy

21

● Instead of modeling the system as a single automaton, the modular approach uses

generators and specifications

○ Generators:

■ Independent subsystems models
■ Generates all chain of events (without control)

○ Specification:

■ Control/synchronization rules of two or more subsystems
■ Blocks some events

● The parallel composition operation synchronizes the generators and specifications

○ The result is an automaton with all possible chain of events

The modular approach

Background

Goals and contributions

Thesis

22

Goals of this thesis

23

Thesis

This thesis proposes the creation of a formal model of the
Linux tasks, including the synchronization primitives that

influence their timing behavior.

This model should
enable the formal verification of the logical behavior of the
system, as well as the formal analysis of its timing behavior.

Three sub-goals

● First stage: the formal model
○ The methodology
○ The model
○ Offline verification

● Second stage: efficient runtime verification of the logical behavior
○ Online runtime verification
○ Auto code generation from models
○ Can be used in production

● Third stage: analysis and measurements of the timing behavior
○ Interpretation of the model using academic real-time viewpoint
○ Definition of a safe latency bound
○ Development of a tool to measure the components of the latency bound

Contributions

24

Three stages

Thesis

Contributions

25

All the results are available

online here:

Thesis

Part I:
The thread model

26

The PREEMPT_RT thread model

The PREEMPT_RT Thread model

27

Approach

The PREEMPT_RT thread model

Modeling

28

The PREEMPT_RT thread model

Events

29

The PREEMPT_RT thread model

Based in the Timing
analysis paper, but

improved.

Based also on a daily base
work as a kernel developer

at red hat.

Interrupt related events

30

The PREEMPT_RT thread model

NMI, IRQ, IRQ control

Automaton event Kernel event Description

hw_local_irq_disable preemptirq:irq_disable Begin IRQ handler

hw_local_irq_enable preemptirq:irq_enable Return IRQ handler

local_irq_disable preemptirq:irq_disable Mask IRQs

local_irq_enable preemptirq:irq_enable Unmask IRQs

nmi_entry irq_vectors:nmi Begin NMI handler

nmi_exit irq_vectors:nmi Return NMI Handler

Scheduling events

31

The PREEMPT_RT thread model

Preemption and scheduling

Automaton event Kernel event Description

preempt_disable preemptirq:preempt_disable Disable preemption

preempt_enable preemptirq:preempt_enable Enable preemption

preempt_disable_sched preemptirq:preempt_disable Disable preemption to call the scheduler

preempt_enable_sched preemptirq:preempt_enable Enables preemption returning from the
scheduler

schedule_entry sched:sched_entry Begin of the scheduler

schedule_exit sched:sched_exit Return of the scheduler

sched_need_resched sched:set_need_resched Set need resched

Thread states

32

Runnable or not runnable? That is the question!

Automaton event Kernel event Description

sched_waking sched:sched_waking Activation of a thread

sched_set_state_runnable sched:sched_set_state Thread is runnable

sched_set_state_sleepable sched:sched_set_state Thread can go to sleepable

The PREEMPT_RT thread model

Context switch

33

Two “meta” tasks: the one under analysis and all other

Automaton event Kernel event Description

sched_switch_in sched:sched_switch Switch in of the thread under analysis

sched_switch_suspend sched:sched_switch Switch out due to a suspension of the thread
under analysis

sched_switch_preempt sched:sched_switch Switch out due to a preemption of the thread
under analysis

sched_switch_blocking sched:sched_switch Switch out due to a blocking of the thread under
analysis

sched_switch_in_o sched:sched_switch Switch in of another thread

sched_switch_out_o sched:sched_switch Switch out of another thread

The PREEMPT_RT thread model

Mutex

34

Mutual exclusion

Automaton event Kernel event Description

mutex_lock lock:rt_mutex_lock Requested a RT Mutex

mutex_blocked lock:rt_mutex_block Blocked in a RT Mutex

mutex_acquired lock:rt_mutex_acquired Acquired a RT Mutex

mutex_abandon lock:rt_mutex_abandon Abandoned the request of a RT Mutex

The PREEMPT_RT thread model

Read/write lock and semaphore

35

Read side

Automaton event Kernel event Description

read_lock lock:rwlock_lock Requested a R/W Lock or Sem as reader

read_blocked lock:rwlock_block Blocked in a R/W Lock or Sem as reader

read_acquired lock:rwlock_acquired Acquired a R/W Lock or Sem as reader

read_abandon lock:rwlock_abandon Abandoned a R/W Lock or Sem as reader

The PREEMPT_RT thread model

Read/write lock and semaphore

36

Write side

Automaton event Kernel event Description

write_lock lock:rwlock_lock Requested a R/W Lock or Sem as writer

write_blocked lock:rwlock_block Blocked in a R/W Lock or Sem as writer

write_acquired lock:rwlock_acquired Acquired a R/W Lock or Sem as writer

write_abandon lock:rwlock_abandon Abandoned a R/W Lock or Sem as writer

The PREEMPT_RT thread model

Generators

37

The PREEMPT_RT thread model

They are mostly basic

kernel operations, in the

way that developers think

about them

independently.

They can be specialized,

but better not generalize

them.

The generators!

38

Independent operations

Name States Events Transitions
G01 Sleepable or runnable 2 3 3
G02 Context switch 2 4 4
G03 Context switch other thread 2 2 2
G04 Scheduling context 2 2 2
G05 Need resched 1 1 1
G06 Preempt disable 3 4 4
G07 IRQ Masking 2 2 2
G08 IRQ handling 2 2 2
G09 NMI 2 2 2
G10 Mutex 3 4 6
G11 Write lock 3 4 6
G12 Read lock 3 4 6

The PREEMPT_RT thread model

Specifications

39

The PREEMPT_RT thread model

We tried to keep the

specifications as simple as

possible, trying to model a

single behavior per

specification.

We also tried to keep a

logical interpretation for

each specification, like

“necessary” and

“sufficient” conditions.

Specifications

40

Relation among operations (continue..)

Name States Events Transitions
S01 Sched in after wakeup 2 5 6
S02 Resched and wakeup sufficiency 3 10 18
S03 Scheduler with preempt disable 2 4 4
S04 Scheduler doesn't enable preemption 2 6 6
S05 Scheduler with interrupt enabled 2 4 4
S06 Switch out then in 2 20 20
S07 Switch with preempt/irq disabled 3 10 14
S08 Switch while scheduling 2 8 8
S09 Schedule always switch 3 6 6
S10 Preempt disable to sched 2 3 4
S11 No wakeup right before switch 3 5 8
S12 IRQ context disable events 2 27 27
S13 NMI blocks all events 2 34 34
S14 Set sleepable while running 2 6 6
S15 Don't set runnable when scheduling 2 4 4
S16 Scheduling context operations 2 3 3

The PREEMPT_RT thread model

41

Name States Events Transitions
S17 IRQ disabled 3 4 4
S18 Schedule necessary and sufficient 8 9 27
S19 Need resched forces scheduling 7 25 53
S20 Lock while running 2 16 16
S21 Lock while preemptive 2 16 16
S22 Lock while interruptible 2 16 16
S23 No suspension in lock algorithms 3 10 19
S24 Sched blocking if blocks 3 10 20
S25 Need resched blocks lock ops 2 15 17
S26 Lock either read or write 3 6 6
S27 Mutex doesn't use rw lock 2 11 11
S28 RW lock does not sched unless block 4 11 22
S29 Mutex does not sched unless block 4 7 16
S30 Disable IRQ in sched implies switch 5 6 10
S31 Need resched preempts unless sched 3 5 12
S32 Does not suspend in mutex 3 5 11
S33 Does not suspend in rw lock 3 8 16

Specifications
Relation among operations

The PREEMPT_RT thread model

The model!

42

Composition of generators and specifications

● The final model has:
○ 9017 states
○ 20103 transitions

● It would be impossible to model it directly
● Using the modular approach, the final model is composed of:

○ 34 events
○ 12 generators
○ 33 specifications

■ The most complex module (a specification) has eight states!

The PREEMPT_RT thread model

Verification: perf task_model

43

The PREEMPT_RT thread model

The perf task_model extension
was developed to do the

automatic verification

Two phases: record and
report

All in user-space

That was a big problem of the
“timing analysis” of the

previous paper: there was no
way to compare the kernel

against our reasoning

perf task_model output

44

Automatically runs the automaton, based on the kernel trace

 1: Reference model: isorc.dot
 2: +----> +=thread of interest - .=other threads
 3: | +-> T=Thread - I=IRQ - N=NMI
 4: | |
 5: | | TID | timestamp | cpu | event | state | safe?
 6: . T 8 436.912532 [000] preempt_enable -> q0 safe
 7: . T 8 436.912534 [000] local_irq_disable -> q8102
 8: . T 8 436.912535 [000] preempt_disable -> q19421
 9: . T 8 436.912535 [000] sched_waking -> q99
10: . T 8 436.912535 [000] sched_need_resched -> q14076
11: . T 8 436.912535 [000] local_irq_enable -> q1965
12: . T 8 436.912536 [000] preempt_enable -> q12256
13: . T 8 436.912536 [000] preempt_disable_sched -> q18615,q23376
14: . T 8 436.912536 [000] schedule_entry -> q16926,q17108,q2649
15: . T 8 436.912537 [000] local_irq_disable -> q11700,q14046,q21391
16: . T 8 436.912537 [000] sched_switch_out_o -> q10337,q20018,q21933
17: . T 8 436.912537 [000] sched_switch_in -> q10268,q20126
18: + T 1840 436.912537 [000] local_irq_enable -> q20036
19: + T 1840 436.912538 [000] schedule_exit -> q21033

The PREEMPT_RT thread model

Runtime verification of the kernel

45

Even better than we expected

● By modeling the expected behavior, we can catch cases in which the kernel

does not behave as expected

○ We found three problems on kernel
■ One unexpected call to schedule()

● Schedule called in vain
○ Resulted in a kernel patch

■ Locking correctness
● A scheduling while in atomic in the single-core case

■ Perf & Ftrace losing events
● A problem in the trace recursion control

The PREEMPT_RT thread model

A Thread Synchronization Model for the PREEMPT_RT Linux Kernel

46

Lessons learned

Pros

● Formal model

● Automatic cross-verification

● Automata is simple enough to avoid

modeling problems

○ We often faced state explosion but made it

● The format was well received by Linux

kernel community

Cons

● The verification uses too much resources

○ GBs of data per sec

● Offline

○ No actions can be taken during a problem

● It shows the bound of the scheduling

latency, but it is only logical and too

formal!

The PREEMPT_RT thread model

Part II:
Verifying the logical behavior

47

Online Runtime Verification

Efficient runtime verification for the Linux Kernel

48

Online Runtime Verification

Approach

Code generation

49

Online Runtime Verification

dot2c

● We develop the dot2c tool to translate the model into code

○ It is unpractical to thing about coding a model with 20k+ states

● It is a python program that has one input:

○ An automaton model in the .dot format

■ It is an open format (graphviz)

● Supremica tool exports models with this format

Code generation

50

Online Runtime Verification

WiP Example

[bristot@t460s dot2c]$./dot2c wakeup_in_preemptive.dot
…

Wakeup in preemptive model (WiP):

Code generation:

Code generation

51

Online Runtime Verification

Automaton in C

enum states {
preemptive = 0,
non_preemptive,
state_max

};

enum events {
preempt_disable = 0,
preempt_enable,
sched_waking,
event_max

};

struct automaton {
char *state_names[state_max];
char *event_names[event_max];
char function[state_max][event_max];
char initial_state;
char final_states[state_max];

};

Code generation

52

Online Runtime Verification

Automaton in C

enum states {
preemptive = 0,
non_preemptive,
state_max

};

enum events {
preempt_disable = 0,
preempt_enable,
sched_waking,
event_max

};
....
struct automaton aut = {

.event_names = { "preempt_disable", "preempt_enable", "sched_waking" },

.state_names = { "preemptive", "non_preemptive" },

.function = {
{ non_preemptive, -1, -1 },
{ -1, preemptive, non_preemptive },

},
.initial_state = preemptive,
.final_states = { 1, 0 }

};

Monitor

53

Online Runtime Verification

dot2c

● Interprets the kernel events, using the model

● Built as a kernel module
○ Processing the events synchronously with the kernel execution

● Set up instrumentation:
○ Hooks to kernel events, e.g., tracepoints, functions,...
○ Waits for the initial condition

● Verifies if a given kernel event is accepted by the model
○ If an error occurs, actions can be taken in the current state of the system

■ Stacktraces
■ Print variables
■ Save a memory dump...

Monitor

54

Online Runtime Verification

Main function: process event

char process_event(struct verification *ver, enum events event)
{

int curr_state = get_curr_state(ver);
int next_state = get_next_state(ver, curr_state, event);

if (next_state != NULL) {
set_curr_state(ver, next_state);

debug("%s -> %s = %s %s\n",
 get_state_name(ver, curr_state),
 get_event_name(ver, event),
 get_state_name(ver, next_state),
 next_state ? "" : "safe!");

return true;
}

error("event %s not expected in the state %s\n",
get_event_name(ver, event),
get_state_name(ver, curr_state));

stack(0);

return false;
}

Monitor

55

Online Runtime Verification

Main function: in details

char *get_state_name(struct verification *ver, enum states state) {
return ver->aut->state_names[state];

}

char *get_event_name(struct verification *ver, enum events event) {
return ver->aut->event_names[event];

}

char get_next_state(struct verification *ver, enum states curr_state,
 enum events event) {

return ver->aut->function[curr_state][event];
}

char get_curr_state(struct verification *ver) {
return ver->curr_state;

}

void set_curr_state(struct verification *ver, enum states state) {
ver->curr_state = state;

}

Monitor

56

Online Runtime Verification

Main function: in details

char *get_state_name(struct verification *ver, enum states state) {
return ver->aut->state_names[state];

}

char *get_event_name(struct verification *ver, enum events event) {
return ver->aut->event_names[event];

}

char get_next_state(struct verification *ver, enum states curr_state,
 enum events event) {

return ver->aut->function[curr_state][event];
}

char get_curr_state(struct verification *ver) {
return ver->curr_state;

}

void set_curr_state(struct verification *ver, enum states state) {
ver->curr_state = state;

}

All operations are O(1)!

Only one variable to keep the state!

Instrumentation

57

Online Runtime Verification

Running the verification

● Kernel module is loaded to a running kernel
○ While no problem is found:

■ Either print the execution of all events in the trace buffer
■ Or run silently

● If an unexpected transitions is found:
○ Print the error on trace buffer
○ Take any action

Error output

58

Online Runtime Verification

 A real one

 bash-1157 [003]2.. 191.199172: process_event: non_preemptive -> preempt_enable = preemptive safe!
 bash-1157 [003] dN..5.. 191.199182: process_event: event sched_waking not expected in the state preemptive
 bash-1157 [003] dN..5.. 191.199186: <stack trace>
 => process_event
 => __handle_event
 => ttwu_do_wakeup
 => try_to_wake_up
 => irq_exit
 => smp_apic_timer_interrupt
 => apic_timer_interrupt
 => rcu_irq_exit_irqson
 => trace_preempt_on
 => preempt_count_sub
 => _raw_spin_unlock_irqrestore
 => __down_write_common
 => anon_vma_clone
 => anon_vma_fork
 => copy_process.part.42
 => _do_fork
 => do_syscall_64
 => entry_SYSCALL_64_after_hwframe

Kernel bug report

59

Online Runtime Verification

A problem with tracing
subsystem was reported

using this model’s module.

Some
preempt_disable/enable

events missing.

Problem was reported and

discussed.

Performance evaluation

Online Runtime Verification

60

Performance evaluation

61

Online Runtime Verification

Setup

● Two benchmarks
○ Throughput using the Phoronix Test Suite

■ Low kernel activity
■ High kernel activity

○ Scheduling latency
■ Cyclictest

● Base of comparison
○ as-is: the system without any verification or trace
○ model: a sample model
○ trace: tracing (ftrace) the same events used in the verification

■ Only trace! No collection or interpretation

Performance evaluation

62

Online Runtime Verification

High kernel activation (SWA monitor)

Performance evaluation

63

Online Runtime Verification

Low kernel activation (SWA monitor)

Performance evaluation

64

Online Runtime Verification

Scheduling latency experiment (NRS monitor)

Remarks

65

Online Runtime Verification

● Trace is enable in production systems
○ So this method can be used on production as well

● This is useful mainly for debugging problems:
○ Model the expected behavior
○ Wait for an unexpected event to happen

● We already have content for a journal extension

● There is the interest of other working groups on it
○ Mainly for safety-critical systems and CI
○ We are trying to model other subsystem
○ I am also working with other formalism

The experiments and
proof of concept code are

available here:

Part III:
Timing behavior analysis

66

Demystifying the real-time Linux scheduling latency

Real-Time Linux vs Real-Time theory

67

Linux approach

● Linux was adapted to become a RTOS

● PREEMPT_RT: De facto standard

● Evaluated (mainly) with cyclictest

● Cyclictest:

○ Practical: lightweight and out-of-the-box

○ It is a “black-box” test

○ No demonstration

○ Does not provide evidence of “root-cause”

Demystifying the real-time Linux scheduling latency

Demystifying the Real-Time Linux Scheduling Latency

68

Approach

Formal specification Measurement and analysisScheduling latency bound

Demystifying the real-time Linux scheduling latency

Demystifying the real-time Linux scheduling latency

From formal specification to synchronization rules

69

Formally backed natural language arguments

● Generators

○ Translated into a set of operations

● Specifications

○ Translated into a set of synchronization rules

Scheduling latency definition

70

From the first necessary

condition to set need

resched, to the the last

action after the

scheduling, which is

enabling preemption after

the return from

__schedule().

The scheduling latency experienced by an arbitrary thread τ is

● the longest time elapsed between the time A in which any job of τ
becomes ready and with the highest priority

● and the time F in which the scheduler returns and allows τ to execute
its code

Demystifying the real-time Linux scheduling latency

Interference and blocking

71

The scheduling latency in

this paper refers to the

delay between the

notification of a new

highest priority thread, to

point in which this thread

starts running its own

code.

The highest priority thread

can belong to any

scheduler: the analysis is

scheduler independent.

The scheduling latency is caused by

● Blocking from the current (and so lower) priority

thread

● Including scheduling

● Interference from IRQs and NMI

Demystifying the real-time Linux scheduling latency

Blocking bound

72

From the specification that bounds the block to a timeline

Demystifying the real-time Linux scheduling latency

Timeline and cases

73

All possible cases

Demystifying the real-time Linux scheduling latency

Blocking variables

74

In the model, the

preemption control is

specialized into two

different operations: to

postpone the scheduler

(the most known

behavior) or to protect the

execution of the

__schedule() function from

recursion.

● DPOID: preemption or interrupts disabled to

postpone the scheduler

● DPAIE: preemption and interrupts enabled, as a

transient state from poid to psd; when scheduling

a new highest priority thread

● DPSD: preemption disable to schedule

● DST: delay caused by the scheduling tail; the “non

return” point in which a new arrived task will have to

wait for the current scheduling operation to finish

before scheduling

Demystifying the real-time Linux scheduling latency

Timeline and cases

75

Variables in the the timeline

Demystifying the real-time Linux scheduling latency

Timeline and cases

76

IRQ and NMI interference

Demystifying the real-time Linux scheduling latency

And the scheduling latency bounds to:

77

The bound considers all

possible cases. Note that

the Latency L is present in

both sides of the equation.

So, L is bounded by the

least positive value

fulfilling the equation (like

on RTA).

L = max(DST, DPOID) + DPAIE + DPSD + INMI(L) + IIRQ(L)

Demystifying the real-time Linux scheduling latency

Interrupts are workload dependent

78

This topic was heavily

discussed at the Real-time

Micro Conference (inside

Linux Plumbers) in 2019,

more info here:

● Instead of proposing “the best” interrupt

characterization, the rtsl reports the scheduling

latency based on some well-known

characterizations:
○ No interrupt

○ Worst single interrupt

○ Single occurence of all interrupts

○ Sporadic

○ Sliding window (Author’s preferred)

○ Sliding window with oWCET

Demystifying the real-time Linux scheduling latency

A practical scheduling latency estimation tool

79

Method and challenges

● Based on the latency bound

● The latency bound is based on the model

● The model is based on tracing of events

○ but high frequency events

■ hundreds MB/sec/CPU

● Challenges:

○ To minimize the (runtime) overhead

○ Work out-of-the-box

Demystifying the real-time Linux scheduling latency

80

Based on perf

Works in two phases:

- The record mode
saves the trace data;

- The report mode
process the trace
and does the
analysis.

rt_sched_latency (rtsl)

Demystifying the real-time Linux scheduling latency

record phase

81

Low overhead trace recording

● Filters the high frequency trace

○ Doing in-kernel processing

● For blocking variables

○ Reports only the discover of new max values

● For IRQ and NMI

○ Reports one event for each occurrence

● Discounts the interference

○ e.g., IRQ interference on a poid

Demystifying the real-time Linux scheduling latency

report phase

82

Low overhead trace recording

● After the capture, analyzes the trace.

○ All in user-space.

● Most of the analysis is done in python

○ Easy to extend

● Two outputs

○ Textual: good for debug

○ Chart: good comparisons (and papers :-))

● Does a per-cpu scheduling latency analysis

○ Using different IRQ/NMI characterization

Demystifying the real-time Linux scheduling latency

rtsl report output

83

Textual output

Demystifying the real-time Linux scheduling latency

rtsl report output

84

Chart output

Demystifying the real-time Linux scheduling latency

Experiments

85

The experiments passed

by the artifact evaluation!● Scheduling latency measurements on two systems:
○ workstation: eighth CPUs

○ server: twelve CPUs server

● Experiments:
○ Single-core

■ Different duration

■ Different workload

○ Multi-core

● Running in parallel with cyclictest

● Note: The goal of the experiments is to

demonstrate the tool, not to define worst values.

Demystifying the real-time Linux scheduling latency

Single-core experiments

86

Demystifying the real-time Linux scheduling latency

Multicore experiments

87

Demystifying the real-time Linux scheduling latency

88

For more information

about the paper, like

source code, other

comments, Q&A, check its

companion page!

● The PREEMPT_RT preemption model is deterministic, and

the scheduling latency is bounded

● The approach presented in this thesis opens the door for a

new set of real-time analysis for Linux
○ The analytical interpretation of Linux thread model developed

in this paper untight the Linux complexity, enabling the

reasoning at a more sophisticated level

● Even though this rtsl finds higher scheduling latency values,

they are still low enough to justify Linux as RTOS on the

current scenarios

● rtsl is practical, and resolves many problems of cyclictest.
○ E.g., it can be used to point to the root causes of the latency

○ But still can, and should, be improved

■ Both with code, and other analysis.

Demystifying the real-time Linux scheduling latency

Remarks

Results

89

Automata-based Formal Analysis and Verification of the Real-Time Linux Kernel

Papers

90

Main topic

- One workshop

- Four conferences

- One journal

All available here:

● D. B. de Oliveira, R. S. de Oliveira, T. Cucinotta, L. Abeni. Automata-Based
Modeling of Interrupts in the Linux PREEMPT RT Kernel, in Proceedings of
the 22nd IEEE International Conference on Emerging Technologies And Factory
Automation (ETFA 2017), September 12-15, 2017, Limassol, Cyprus.

● D. B. de Oliveira, T. Cucinotta, R. S. de Oliveira. Modeling the Behavior of
Threads in the PREEMPT_RT Linux Kernel Using Automata, in Proceedings
of the International Workshop on Embedded Operating Systems (EWILI 2018),
October 10th, 2018, Torino, Italy.

● D. B. de Oliveira, R. S. de Oliveira, T. Cucinotta. Untangling the Intricacies of
Thread Synchronization in the PREEMPT RT Linux Kernel, in Proceedings of
the 22nd IEEE International Symposium on Real-Time Distributed Computing
(IEEE ISORC 2019), May 7-9, 2019, Valencia, Spain

Automata-based Formal Analysis and Verification of the Real-Time Linux Kernel

Papers

91

Main topic

Journal = Consolidated

results

SEFM = Lost the fear of

FM community

ECRTS = A top RT

conference explaining the

math behind the

PREEMPT RT (my goal)

● D. B. De Oliveira, T. Cucinotta, R. S. De Oliveira. Efficient formal verification
for the Linux kernel, 17th International Conference on Software Engineering and
Formal Methods (SEFM 2019), September 16-20th, 2019, Oslo, Norway.

● D. B. De Oliveira, R. S. De Oliveira, T. Cucinotta. A thread synchronization
model for the PREEMPT_RT Linux kernel, Elsevier Journal of Systems
Architecture (JSA), Vol. 107, August 2020.

● D. B. De Oliveira, D. Casini, R. S. De Oliveira. T. Cucinotta. Demystifying the
Real-Time Linux Scheduling Latency, in the Proceedings of the 32th
Euromicro Conference on Real-time Systems (ECRTS), July 7-10th, 2020,
Modena, Italy.

Automata-based Formal Analysis and Verification of the Real-Time Linux Kernel

Other papers

92

Other papers

One conference as third

author

One workshop

One journal in the informal

part of the Ph.D.

One artifact evaluation

● D. B. De Oliveira, R. S. De Oliveira (2016). Timing analysis of the PREEMPT RT Linux
kernel, Softw. Pract. Exper., 46: 789– 819. doi: 10.1002/spe.2333.

● K. P. Silva, L. F. Arcaro, D. B. de Oliveira, R. S. de Oliveira. An Empirical Study on the
Adequacy of MBPTA for Tasks Executed on a Complex Computer Architecture with
Linux, in Proceedings of the 23rd IEEE International Conference on Emerging Technologies And
Factory Automation (ETFA 2018), September 4th - 7th, 2018, Torino, Italy.

● D. B. de Oliveira, D. Casini, R. S. de Oliveira, T. Cucinotta, A. Biondi and G. Buttazzo. Nested
Locks in the Lock Implementation: The Real-Time Read-Write Semaphores on Linux, in
Proceedings of the International Real-Time Scheduling Open Problems Seminar (RTSOPS
2018), co-located with the 30th Euromicro Conference on Real-Time Systems (ECRTS 2018).
July 3, 2018, Barcelona, Spain.

● D. B. De Oliveira, D. Casini, R. S. De Oliveira. T. Cucinotta. Demystifying the Real-Time
Linux Scheduling Latency (Artifact), in the Proceedings of the 32th Euromicro Conference
on Real-time Systems (ECRTS), July 7-10th, 2020, Modena, Italy.

Automata-based Formal Analysis and Verification of the Real-Time Linux Kernel

Linux related conferences

93

Slides of my talks are all

here:● 18 talks at Linux/Open Source related conferences

○ CZ 4, CA 4, FR 3, PT 2, UK 1, US 1, BR 1, IT 1, Online 1.
○ Mostly about the topics of the thesis
○ But also about other RT and trace topics

● I organized:

○ Real-time micro conference at Linux Plumbers 2019
○ Real-time Linux Summit 2019
○ Real-time micro conference at Linux Plumbers 2020...
○ Real-time Linux Summit 2020...

● Helped on:

○ Scheduling micro conference at Linux Plumbers 2019
○ Scheduling micro conference at Linux Plumbers 2020

Automata-based Formal Analysis and Verification of the Real-Time Linux Kernel

Other academic activities

94

Slides of my talks are all

here:● Classes:

○ Real-time Linux at Real-time course (UFSC)
○ Formal verification at Component-based software design course (SSSUP)

● Managed the cotutela agreement

○ Lots of work to merge IT/BR Ph.D. rules

● Collaborations with other research groups

○ Boston University - Unikernel
○ ETH Zurich - FM

● Reviewed papers for SBESC

● PC of EWiLi and (postponed to 2021) RT Cloud Workshop inside ECRTS

● Participated in a European project submission

○ Ericsson/Red Hat/Uni Torino/Lund University/Sant’Anna

○ Not as a student but as Red Hat (industrial partner)

Automata-based Formal Analysis and Verification of the Real-Time Linux Kernel

95

For more information

about the thesis, like

source code, other

comments, Q&A, check its

companion page!

● The idea of using formal methods to explain Linux was risky:
○ I touched state-explosion many times

○ Kernel generates GB of events per second

● The simplicity of automata was the key factor
○ It was simple on purpose

● The RV results were WAY better than expected

● The Latency paper was the goal and, with that in a top

conference, I could finally sleep in peace with myself

● This is just the beginning, because there is a lot of work to

be done

● Thanks Tommaso, Romulo, Casini, Luca and Clark

Final words
Automata-based Formal Analysis and Verification of the Real-Time Linux Kernel

Questions?

96

A
utom

ata-based Form
al A

nalysis and Verification of the Real-Tim
e Linux Kernel

Thanks!

97

That is all for today, thanks for watching, and have a nice day!

