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Abstract—As modern network infrastructure moves from hardware-based to software-based using Network Function Virtualization, a
new set of requirements is raised for operating system developers. By using the real-time kernel options and advanced CPU isolation
features common to the HPC use-cases, Linux is becoming a central building block for this new architecture that aims to enable a new
set of low latency networked services. Tuning Linux for these applications is not an easy task, as it requires a deep understanding of
the Linux execution model and the mix of user-space tooling and tracing features. This paper discusses the internal aspects of Linux
that influence the Operating System Noise from a timing perspective. It also presents Linux’s osnoise tracer, an in-kernel tracer that
enables the measurement of the Operating System Noise as observed by a workload, and the tracing of the sources of the noise, in an
integrated manner, facilitating the analysis and debugging of the system. Finally, this paper presents a series of experiments
demonstrating both Linux’s ability to deliver low OS noise (in the single-digit µs order), and the ability of the proposed tool to provide
precise information about root-cause of timing-related OS noise problems.

Index Terms—Linux Kernel, Operating System Noise, High-Performance Computing, Soft Real-Time Systems.
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1 INTRODUCTION

The Linux Operating System (OS) has proved to be a vi-
able option for a wide range of very niched applications, de-
spite its general-purpose nature. For example, Linux can be
found in the High-Performance Computing (HPC) domain,
running on all the top 500 supercomputers1. It can also be
found in the embedded real-time systems domain, not only
in the area of industrial automation and robot control but
even reaching out the space [1]. These achievements are
possible thanks to the great flexibility in the configuration
options of Linux, and specifically its kernel.

Another remarkable domain where Linux plays a cen-
tral role is the one of developing core services supporting
modern networking infrastructures and the Internet. With
Network Function Virtualization (NFV) [2] and Software-
Defined Networking (SDN) [3], this domain is shifting from
the traditional paradigm of hardware appliances sized for
the peak-hour, to the new one of flexible software-based and
programmable networking services with horizontal elastic-
ity abilities to adapt dynamically to the workload condi-
tions. These new architectures often rely on general-purpose
hardware [4] and software stacks based on Linux [5].

The 5G network stack is built upon this paradigm, and
it is enabling a new set of services characterized by strict
timing requirements [6]. These were generally satisfied us-
ing physical appliances in traditional networks. However, in
the new 5G stack, these requirements need to be achieved by
software-based appliances, requiring the support of a real-
time operating system. For example, in Virtualized Radio
Access Network (vRAN), latencies are in the order of tens of
microseconds [4, 7]. Such a need made time and processing
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1. By Nov. 2021, according to https://www.top500.org/.

latency one of the main metrics for vendors in this market [8,
9, 10].

To meet these tight timing requirements, both hardware
and Linux are configured according to standard practices
from both the HPC and the real-time domains. To this end,
the hardware is configured to achieve the best trade-off
between performance and determinism. This setup includes
adjusting the processor speed and power savings setup
while disabling features that could cause hardware-induced
latencies, such as system management interrupts (SMIs).

Regarding the Linux configuration, the system is usually
partitioned into a set of isolated and housekeeping CPUs,
which is a typical setup for HPC systems. The housekeeping
CPUs are those where the tasks necessary for the regular
system usage will run. This includes kernel threads respon-
sible for in-kernel mechanisms, such as RCU (read-copy-
update) callback threads [11], kernel threads that perform
deferred work such as kworkers and threads dispatched
by daemons and users. General system’s IRQs (Interrupt Re-
Quests) are also routed to housekeeping CPUs. This way, the
isolated CPUs are then dedicated to the NFV work. However,
despite the high-grade CPU isolation level currently avail-
able on Linux, some housekeeping work is still necessary on
all CPUs. For example, the timer IRQ still needs to happen
under certain conditions, and some kernel activities need to
dispatch a kworker for all online CPUs. Drawing from real-
time setups, NFV threads are often configured with real-
time priorities, and the kernel is generally configured with
the fully preemptive mode (using the PREEMPT RT patch-
set [12]) to provide bounded wakeup latencies.

In order to debug and evaluate the system setup, Linux
practitioners use syntectic workloads that mimic the be-
havior of these complex scenarios. NFV applications run
both triggered by an interrupt or by polling the network
device while waiting for packets, running non-stop. While
the Linux wakeup latency has been extensively studied from
the real-time perspective [13, 14], this is not the case for the
interference suffered by threads. This subject however was
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extensively covered by another community: the HPC one,
in a metric named OS noise [15, 16]. In this paper, we focus
on the practicalities of OS noise measurement and analysis
on Linux, from a real-time viewpoint.

Why yet another tool? Several tools have been proposed
over the years to measure OS noise, and they can be clas-
sified into two categories: workload and trace-based methods.
Both of these have advantages and disadvantages, exten-
sively discussed later in the paper. In summary, workload
methods simulate a workload, being capable of accounting
for the OS noise measurement as a metric reported by the
workload. For instance, by detecting a large amount of time
elapsed between two consecutive reads of the time or by the
number of finished operations. The limitation of workload-
based tools is that they do not provide any insight into the
root cause of the noise. Conversely, trace-based methods
show potential causes of latency spikes, but they cannot
account for how the workload perceives the noise.

Differently from previous work, we cover both worlds
by designing and implementing a comprehensive kernel
tracer to deal with the OS noise on Linux, called osnoise.
It uses a hybrid approach, leveraging both the workload
and a tracing mechanism synchronized together to account
for the operating system noise while still providing detailed
information on the root causes of OS noise spikes, and also
reducing the tracing overhead using in-kernel tracing fea-
tures. While the tool was developed with extreme isolation
cases in mind, targeting the detection of single-digit µs noise
occurrences, it is not limited to this use case. Indeed, it can
be applied to any HPC system setup.

The osnoise tracer is officially part of the Linux kernel
since version 5.14, passing by the thorough kernel revision
process, including experts in real-time, scheduling, and
tracing, evidencing the agreement on the abstractions and
technologies used by osnoise. Since Linux kernel version
5.17, the tracer can be used as an user-space tool available
via the rtla (Real-Time Linux Analysis) toolset, becoming
easily accessible both by practitioners to test their systems
and developers to extend it.

Paper contributions. The contributions of this paper are
three-fold: (I) propose a precise definition of the causes
of OS noise in Linux, from the real-time perspective; (II)
present a kernel tracer that is able to measure the OS noise
using the workload approach, while also providing tracing
information essential to pinpoint the tasks suffering of OS
noise, not only caused by the OS, but also from the hard-
ware or the virtualization layer; (III) report on empirical
measurements of the OS noise from different configurations
of Linux, commonly found in NFV setups, showing how
the tool can be used to find the root causes of high latency
spikes, thus enabling finer-grained tuning of the system.

2 BACKGROUND

We start presenting the needed background. First, Sec-
tion 2.1 presents the Linux execution contexts and their
relation. Then, Section 2.2 summarizes the Linux schedulers
hierarchy and the most commonly used tracers.

2.1 Linux execution contexts and their relation
In Linux, there are four main execution contexts: non-
maskable interrupts (NMIs), maskable interrupts (IRQs),
softirqs (deferred IRQ activities), (note that in the PRE-
EMPT RT, the softirq context is moved from its own exe-
cution context to run as a regular thread), and threads [12].
When there is no explicit reason to distinguish among them,
we hereafter refer to all of them as tasks. Interrupts are
managed by the interrupt controller, which queues and
dispatches multiple IRQs and one NMI for each CPU. The
NMI handler is the highest-priority activity on each CPU,
it is non-maskable, and hence it is capable of preempting
IRQs and threads. IRQs, in turn, are able to preempt threads
and softirqs, unless they have been temporarily disabled
within critical sections of the kernel. Ssoftirq is a software
abstraction, and in the standard kernel configuration, runs
after IRQ execution, preempting threads. Finally, threads are
the task abstraction managed by the Linux schedulers.

Linux’s execution contexts are characterized by the fol-
lowing rules:

R1 The per-CPU NMI preempts IRQs, softirqs and
threads;

R2 The per-CPU NMI, once started, runs to comple-
tion.

R3 IRQs can preempt softirqs and threads.
R4 Once an IRQ is started, it is not preempted by

another IRQ.
R5 Softirqs can preempt threads.
R6 Once a softirq is started, it is not preempted by

any other softirq.
R7 Threads cannot preempt the NMI, IRQs and

sofirqs.

The rule-set is derived from the automata-based Thread
Synchronization Model of Linux [17], which showed to
model the Linux synchronization behavior faithfully, and
by industrial expertise.

2.2 Linux schedulers and tracing
Next, we proceed introducing the Linux’s scheduler and
tracing mechanisms.
Schedulers. Linux has a hierarchy of five schedulers, which
handle all the threads irrespectively of their memory con-
texts (e.g., kernel threads, process context in user-space). The
five schedulers are queried in a fixed order to determine the
next thread to run. The first one is the stop-machine, a pseudo
scheduler used to execute kernel facilities. The second one
is SCHED_DEADLINE [18], a deadline-based real-time sched-
uler based on Earliest Deadline First (EDF). The third one
is a POSIX-compliant fixed-priority real-time scheduler. A
thread using this scheduler can be either a SCHED_RR or
a SCHED_FIFO thread. The difference between the two is
only for threads at the same priority: in this case, SCHED_RR
threads are scheduled in a round-robin fashion with a given
time slice, while SCHED_FIFO threads release the CPU only
on suspension, termination or preemption. The fifth sched-
uler, is the general-purpose scheduler, the completely fair
scheduler (CFS), also called SCHED_OTHER. Finally, when
no ready threads are available from these schedulers, the
IDLE scheduler returns the idle thread.
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Fig. 1: The single-program multiple-data (SPMD) model
used for HPC workloads, and the effects of the OS noise
(adapted from [19]).

Tracers. Linux has a rich set of tracing features. For instance,
it is possible to trace specific events such as scheduling
decisions and many functions called in kernel context. These
features are ready to use in most Linux distributions, mainly
because they do not add overhead to the system if they are
not in use. Ftrace is an in-kernel set of tracing features de-
signed to aid practitioners in observing in-kernel operations.

3 MOTIVATIONS AND PROPOSED APPROACH

Next, we start introducing the problem and the motivations
for this work.

The OS noise, sometimes named OS jitter, is a well-
known problem for the HPC field [15, 16].

Generally, HPC workloads follow the single-program
multiple-data (SPMD) model, shown in Figure 1. In this
model, a system is composed ofM processors, and a parallel
job consists of one process per processor [19]. All processes
are dispatched simultaneously at the beginning of the exe-
cution. At the end of the execution, the process synchronizes
to compose the final work, and repeat cyclically.

Ideally, the parallel job process should be the only work-
load assigned to the processor. However, some operating
system-specific jobs need to run on all processors for the
correct operation of the system, like the periodic scheduler
tick, critical kernel threads or others. In this scenario, the
scheduler decisions of each local processor significantly im-
pact in response time of a parallel job. These delays caused
to a parallel workload by OS activities running on the same
processor(s) is named Operating System Noise.

One of the main reasons that led Linux to dominate the
top 500 super-computers list is the flexibility of the sys-
tem configuration. These systems’ setup involve selecting
a small set of CPUs to be in charge of all tasks necessary for
the system execution and operation, such as running system
daemons, periodic maintenance tasks, managing user access
to the system for monitoring activities, etc., leaving a large
set of CPUs isolated from most of the operating noise that
users or the OS could cause.

In NFV, to achieve high throughput, the generic network
stack of the operating system is often bypassed, with all the
network packet processing done in user-space by a specific
process that handles the network flows. Similar to the HPC
case, these processes receive dedicated resources, including
dedicated isolated CPUs.

To reduce even more the latency for handling new pack-
ets, some of these network applications poll the network in
a busy-wait fashion, most notably using the DPDK’s Poll
Mode Driver (PMD)2. In this use case, the Linux setup
follows the same script as HPC. The difference between this
use-case and the HPC one is the real-time constraints, for example
in the order of tens of microseconds for vRAN.

Although some turn-key options to provide CPU iso-
lation are available, such as moving all threads and IRQs
to a reduced set of house-keeping CPUs, the fine-tuning of
the configuration for these time-sensitive use-cases is not
a simple task. The reason is that the OS still requires some
per-CPU actions, such as scheduler tick, virtual memory stat
operations, legacy network packet processing, etc. While
some of these noise sources can be mitigated via fine-tuning
of the configuration, like enabling NOHZ_FULL that reduces
the scheduler tick frequency, others might even require
reworking the currently existing kernel algorithms to either
remove the cause of noise or add a method to mitigate the
issue.

Despite of the appealing use-case, Linux is a general-
purpose operating system, with the main focus on devel-
oping general-purpose features. Specialized communities,
such as the real-time and HPC ones, need to constantly
monitor the evolution of the OS to adapt possible non-HPC
and non-RT aware functionality for these specific use-cases.
It is impractical to force Linux developers to test their new
algorithms to all the specific use-cases’ metrics when there
is no simple way to observe and debug them.

To measure the OS noise, a practitioner generally starts
by spawning a synthetic workload. An example of workload
is sysjitter, and its clone oslat. These tools loop read-
ing the time using architecture-specific instructions. They
define a jitter when two consecutive readings of the time
have a gap larger than a given threshold. These tools do not
attempt to correlate a jitter to a root cause.

To find a root cause, practitioners need to observe the
system. The most efficient way to observe the system is us-
ing tracing. The challenge of using tracing is in the tradeoff
between information and overhead. With a workload and
tracing features in place, the user must identify a correlation
between the noise and tracing information. This correlation
is not always possible, mainly because the workload and the
tracing features are unaware of each other.

It is essential to notice that at the dozens of microseconds
figure, hardware-induced noise is also noticeable by the
workload. Hardware noise can be a side effect of hardware
stalls caused by shared resources, as happening in hyper-
threading enabled processors or execution contexts with a
higher priority than the OS, like SMIs. Because these actions
are not a side effect of the operating system, it is impossible
to observe the events via trace. This noise observed by the

2. https://doc.dpdk.org/guides/prog guide/poll mode drv.html

https://doc.dpdk.org/guides/prog_guide/poll_mode_drv.html
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workload but not by the trace creates a grey area that often
misleads the analysis.

3.1 Proposed approach
In this paper, we propose an integrated tracing and synthetic
workload solution that aims to join workload- and tracing-
based approaches benefits while minimizing the drawbacks
of each solution.

The steps taken for such an approach include:

• Define the composition of the OS Noise on Linux
from the real-time HPC point of view;

• Define the minimum set of tracing events to provide
evidence of the root cause of each noise, at a limited
overhead;

• Create a synthetic workload aware of tracing, en-
abling an unambiguous correlation of the trace and
the noise;

• Make the approach production-ready, with a stan-
dard and easy-to-use interface.

3.2 OS noise composition for real-time HPC workload
This paper adopts the following generalized definition of
OS noise:

Definition 1 (Generalized (OS)-Noise). The OS noise is
defined as all the time spent by a CPU executing instruc-
tions not belonging to a given application task assigned
to that CPU while the task is ready to run.

The definition generalizes the usual interpretation of OS
noise, which typically only includes OS-related activities
and overheads, by accounting also for the time used by
any interfering computational activity, not limited to the
OS but also from regular user-space threads. This makes
a difference when multiple user threads can run in the
same CPU, as any computational activity that can interfere
with the measurement thread would also interfere with any
user thread running with the same scheduler and scheduler
settings (e.g., priority), irrespectively to whether it belongs
to the OS or not. Therefore, it would constitute an actual
source of noise which the fine-grained tuning of the system
needs to account for.

This extended definition gives room for an interesting
link between the OS noise, a metric from the HPC domain,
and the high-priority interference commonly considered in
real-time systems theory.

This generalizes the approach beyond the HPC and NFV
use cases, allowing to practically profile all the sources of
interference that can affect a task running with a given con-
figuration of the scheduler: for example, a thread running at
a given priority under the fixed-priority scheduler of Linux.

Indeed, thanks to this generalized definition, the
osnoise tracer can be used not only to monitor the noise
strictly-related to the operating system but all high-priority
interference in a broader sense.

Generalized (OS)-Noise under fixed-priority scheduling.
As a highly-relevant example, we consider the case in which
a designer needs to determine whether a thread of interest
τi (for example, a constrained-deadline sporadic task [20])
will complete within the deadline, under a partitioned

scheduling setting where workloads are considered for each
processor separately. To this end, the classical worst-case
response time equation can be leveraged:

Ri = ei +
∑

τh∈hpi

ηh(Ri) · eh, (1)

where eh is the worst-case execution time (WCET) of τh,
ηh(∆) is its arrival curve [21] bounding the maximum
number of release events of τh in a time window3 of length
∆, and the set hpi contains the higher-priority activities that
can interfere with the thread τi under analysis.

While using Equation (1) at design time is in principle
possible, it is quite often hard. Indeed, in modern het-
erogeneous computing platforms, many design principles
used to increase average-case performance (e.g., complex
cache hierarchies [22], un-revealed memory controller poli-
cies [23], out-of-order execution, etc.) are making it hard
to obtain reliable WCET estimates for user threads. This is
even harder for OS threads and interrupt service routines,
for which also the arrival pattern is unknown, and therefore
it is difficult to obtain an arrival curve.

Adopting such computing platforms in a small subset of
strictly hard real-time systems, e.g., avionics, calls for com-
prehensive solutions allowing to know all the parameters
involved in Equation (1), e.g., by leveraging static analysis
tools for WCET estimation [24].

However, most real-time systems are robust enough to
tolerate small uncertainties in the estimation of the param-
eters, and they can tolerate a small amount of deadline
misses [25] (e.g., in multimedia [26]).

In these cases, osnoise can be used to empirically
measure the high-priority interference in Equation (1). For
example, to estimate the high-priority interference faced
by a NFV workload running at a given priority under
SCHED_FIFO (a common use-case), the system engineer
can setup osnoise to run under SCHED_FIFO at the same
priority, thus exposing the measurement thread to the same
sources of noise.

4 RELATED WORK

The adverse effects to workload performance due to the op-
erating system noise have been known for a long time [27].
One of the first works addressing the problem of detecting
the OS noise is due to Petrini et al. [15], which identified
and eliminated some source of noise for an HPC application
running on the ASCI Q supercomputer. The study has been
extended in a later paper [28]. Ferreira et al. [29] provided
a characterization of application sensitivity to the noise by
injecting interference at the OS level.

As discussed at the beginning of the paper, Linux tools
for detecting OS noise are divided into two categories:
workload and trace-based methods.

Some workload-based methods run micro-benchmarks
with a known duration, and they measure the difference
between the expected duration of the microbenchmark and
the actual time needed to process it. For this category, one
relevant example is due to Sottile and Minnich [30], who

3. e.g., if τh is a sporadic thread with minimum inter-arrival time Ti,
it holds ηh(∆) = d∆/The).
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proposed the Finite-Time Quantum (FTQ) benchmark. FTQ
measured the number of basic operations done within a
fixed time quantum. Another work from Tsafrir et al. [31]
used microbenchmarks in conjunction with a mechanism
based on “smart timers” to measure OS noise.

A widely used by practitioners workload-based tool is
sysjitter [32]. It measures OS noise by running a thread
on each CPU and keeping track of the duration of each time
interval in which the thread is not running, e.g., due to OS
activities. Other similar tools are oslat [33], jHicckup [34],
and MicroJitterSampler [35]. However, all these tools are not
capable of pointing to the root causes of the OS noise.

This problem can be solved with other tools, which
use a trace-based approach. For example, De et al. [36]
presented a tool to identify the sources of the OS jitter using
kernel instrumentation by leveraging OProfile. The authors
obtained statistics on preemptions and interruptions. Later,
Morari et al. [16] proposed a different tool to measure the
OS noise but using a similar (but more extended) technique
based on kernel instrumentation and building on the LT-
Tng [37] tracer. With respect to [36], the work by Morari et
al. allows for capturing additional causes of the OS noise,
e.g., softirqs. Nataraj et al. [38] proposed another approach
to instrument the Linux kernel and measure the OS noise
during application execution by using KTAU [39]. More
recent work is due to Gonzalez et al. [40], which presents
Jitter-Trace, a tool that uses the information provided by the
perf tracer (see Section 5.3). However, all these trace-based
methods do not account for how workloads perceive the
noise.

Different from previous work, the osnoise tool pro-
posed in this paper takes the best of both workload-based
and trace-based methods, allowing to point to the root
causes of the operating system noise while also accounting
for how the workload perceives the noise.

And finally, but most relevantly, osnoise is the only
tool for directly monitoring the OS noise that has been just
recently made available in the mainline Linux kernel [41],
and hence it is ready-to-use on billions of devices.

5 THE osnoise TRACER

This section presents the osnoise tracer, which leverages
the rules presented in Section 2.1 to correctly profile the
execution time of each task by correctly subtracting the
time required by each interfering activity from its measured
runtime. The tool is not limited to a specific preemption
model of Linux, and it can work with any of its preemption
models, from the non-preemptive kernel to PREEMPT RT.

Before discussing the internals, we present the tool at a
high level. As mentioned, osnoise has two components:
the workload and the tracing components.

5.1 The osnoise workload threads

The osnoise workload threads used for measurements
work on a per-CPU basis.

By default, osnoise creates a periodic kernel thread
on each CPU. The kernel thread can be assigned to any
Linux scheduler, such as SCHED_DEADLINE, SCHED_FIFO,
SCHED_RR, or CFS.

Each thread runs for a pre-determined amount of run-
time. The primary purpose of the workload thread is to
detect the time stolen from its execution, which is consid-
ered OS noise. Each osnoise thread works by reading
the time in a loop. When it detects a gap between two
consecutive readings higher than a given tolerance threshold,
a new noise sample is collected. The time is read using
the trace_local_clock() function. This architecture-
specific non-blocking function provides a lightweight CPU-
level coherent timestamp, at the nanoseconds granularity, at
the same accuracy used by other ftrace tracing mechanisms.

The thread runs with preemption and IRQs enabled. This
way, it can be preempted at any time by any task abstraction
present in Linux.

After runtime microseconds are elapsed since the first
time read of the current period, the workload reports a
summary of the OS noise faced by the current activation.
This summary is reported using tracing features of Linux,
as in Figure 2.

The osnoise summary reports:

• RUNTIME IN US, i.e., the amount of time in µs in
which osnoise looped reading the timestamp.

• NOISE IN US, i.e., the overall amount of noise in µs
observed in the associated runtime.

• PERCENTAGE OF CPU AVAILABLE, i.e., the per-
centage of CPU available to the osnoise thread in
the measuring period.

• MAX SINGLE NOISE IN US, i.e., the longest ob-
served occurrence of noise in µs during the runtime.

• The interference counters: for each type of interference
among the classes NMI, IRQs, softirqs, and threads,
osnoise maintains an interference counter that is
increased in correspondence of an entry event of
activity of that type.

It is worth noting that Figure 2 shows a high number
of hardware noise samples: this is because osnoise was
running on a virtual machine, and the interference due to
virtualization is detected as hardware noise.

5.2 The osnoise parameters
The osnoise tracer has a set of parameters. These options
are accessible via ftrace’s interface, and they are:

• osnoise/cpus: CPUs on which a osnoise threads
will execute.

• osnoise/period_us: the period (in µs) of the
osnoise threads.

• osnoise/runtime_us: how long (in µs) an
osnoise threads will look for noise occurrences.

• osnoise/stop_tracing_us: stop the system trac-
ing if a single noise occurrence higher than the con-
figured value in µs happens. Writing 0 disables this
option.

• osnoise/stop_tracing_total_us: stop the sys-
tem tracing if total noise occurrence higher than the
configured value in µs happens. Writing 0 disables
this option.

• tracing_threshold: the minimum delta between
two time reads to be considered as a noise occur-
rence, in µs. When set to 0, the default value will will
be used, which is currently five µs.
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[root@f35 tracing]# cat trace
# tracer: osnoise
# _-----=> irqs-off
# / _----=> need-resched
# | / _---=> hardirq/softirq
# || / _--=> preempt-depth MAX
# || / SINGLE Interference counters:
# |||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+
# TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD
# | | | |||| | | | | | | | | | |

<...>-859 [000] .... 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1
<...>-860 [001] .... 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3
<...>-861 [002] .... 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21
<...>-862 [003] .... 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0
<...>-863 [004] .... 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41

Fig. 2: osnoise summary output from ftrace interface4.

5.3 The osnoise tracing features
The tracepoints are one of the key pillars of the Linux kernel
tracing. The tracepoints are points in the kernel code where
it is possible to attach a probe to run a function. They are
most commonly used to collect trace information. For exam-
ple, ftrace register a callback function to the tracepoints.
These callback functions collect the data, saving it to a trace
buffer. The data in the trace buffer can then be accessed by
a tracing interface. Figure 3 shows an example of tracepoint
output via ftrace interface.

The usage of tracepoints is not limited to saving data to
the buffer. They have been leveraged for many other use-
cases. For instance, patch the kernel at runtime or transform
network packets [42]. Tracepoints can also be used to opti-
mize tracing itself. While saving data to the trace buffers
has been optimized to the minimum overhead, it is also
possible to pre-process data in the tracepoints in such a
way as to minimize the amount of data written to the trace
buffer. This method has shown good results, reducing the
tracing overhead when the trace processing presents lower
overhead than writing trace to the buffer [42].

The osnoise tracer leverages the current tracing infra-
structure in two ways. It adds probes to existing tracepoints
to collect information and adds a new set of tracepoints with
pre-processed information.

Linux already has tracepoints that intercept the entry
and exit of IRQs, softirqs, and threads. osnoise attaches
a probe to all entry and exit events and uses it to: 1)
account for the number of times each of these classes of
tasks added noise to the workload; 2) to compute the value
of the interference counter used by the workload to identify
how many interferences occurred between two consecutive
reads of the time5; 3) to compute the execution time of the
current interfering task; 4) to subtract the noise occurrence
duration of a preempted noise occurrence by leveraging the
rules discussed in Section 2.1.

At the exit probe of each of these interference sources, a
single tracepoint from osnoise is generated, reporting the
noise-free execution time of the task’s noise observed via trace.

In addition to the tracepoints and the summary at the
end of the period, the osnoise workload emits a trace-

4. All ftrace excerpts share the same column description, as in the
header in Figure 2.

5. The single per-CPU NMI is a particular case without tracepoints; in
this case, a special function was added to collect the same information.

point anytime a noise is identified. This tracepoint informs
about the noise observed via workload, and the amount of
interference that happened between the two consecutive
time reads. The interference counters are fundamental to
unambiguously defining the root cause for a given noise.

For example, in Figure 4, the first four lines represent
the noise as identified by the trace, while the last line is
the tracepoint generated by the workload, mentioning the
previous four interferences.

Both Figures 3 and 4 were extracted from the same trace
file. The difference is that the former contains the previ-
ous existing tracepoints, while the latter includes the new
tracepoints added to the kernel with osnoise. With these
two examples, it is possible to notice that the amount of
information reported by the osnoise tracepoints is reduced
and more intuitive.

Regarding the noise reported in Figure 4, it is important
to notice that the duration reported by the irq_noise
and thread_noise are free of interference. For exam-
ple, the local_timer:236 has a start time later than
the sleep-5843. This means that local_timer:236
preempted sleep-5843, in a case of nested noise. The
local_timer:236, however, discounted its own duration
from the duration of sleep-5843 This facilitates the de-
bugging of the system by removing the fastidious work of
computing these values manually or via a script in user-
space. This also reduces the amount of data saved in the
trace buffer, reducing resource usage and overhead.

Another important thing to notice is that the total noise
observed via trace accounts for 1409532 ns6, but the noise
obseved via workload reports 5092 ns more (1414624 ns), as
illustrated in Figure 5. The reasons behind are multiple. For
example, the overhead added by the tracepoints enabled in
Figure 3 and 4; the delays added by the hardware to manage
context switch and the dispatch of IRQs handlers; delays
caused by cache inlocality after an interrupt [43]; low level
the code that enables the tracing at IRQ context, like making
the RCU aware of the current context7; and the scheduler
call caused by the thread noise.

This justifies the dual approach and motivates the nov-
elty to prior work that used only one of the main distin-

6. The quantity 1409532 ns is the sum of the four individual noise
contribution detected by the tracer and reported in Figure 4, i.e.,
195472 + 415172 + 5627 + 793261.

7. See irq_enter() and irq_exit() functions of Linux.
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osnoise/3-4417 [003] d.... 203398.433218: sched_switch: prev_comm=osnoise/3 prev_pid=4417 prev_prio=120 prev_state=R+
==> next_comm=sleep next_pid=5842 next_prio=120

sleep-5842 [003] d.... 203398.433414: sched_switch: prev_comm=sleep prev_pid=5842 prev_prio=120 prev_state=Z
==> next_comm=bash next_pid=5802 next_prio=120

bash-5802 [003] d.... 203398.433830: sched_switch: prev_comm=bash prev_pid=5802 prev_prio=120 prev_state=S
==> next_comm=bash next_pid=5843 next_prio=120

sleep-5843 [003] d.h.. 203398.434017: local_timer_entry: vector=236
sleep-5843 [003] d.h.. 203398.434022: local_timer_exit: vector=236
sleep-5843 [003] d.... 203398.434629: sched_switch: prev_comm=sleep prev_pid=5843 prev_prio=120 prev_state=S

==> next_comm=osnoise/3 next_pid=4417 next_prio=120

Fig. 3: Example of tracepoints: IRQ and thread context switch events read from ftrace interface4.

sleep-5842 [003] d.... 203398.433413: thread_noise: sleep:5842 start 203398.433217481 duration 195472 ns
bash-5802 [003] d.... 203398.433829: thread_noise: bash:5802 start 203398.433413330 duration 415172 ns
sleep-5843 [003] d.h.. 203398.434022: irq_noise: local_timer:236 start 203398.434016335 duration 5627 ns
sleep-5843 [003] d.... 203398.434629: thread_noise: sleep:5843 start 203398.433829263 duration 793261 ns

osnoise/3-4417 [003] ..... 203398.434631: sample_threshold: start 203398.433215747 duration 1414624 ns interference 4

Fig. 4: Example of tracepoints: osnoise events read from ftrace interface with equivalent data highlighted4.

osnoise thread detected OS noise

1414624 ns

sleep-5842

execution

bash-5802

sleep-5843

195472 ns

timer IRQ

415172 ns
5627 ns

793261 ns

Fig. 5: Graphical representation of Figure 4.

guishing factors with respect to prior work (as extensively
discussed in Section 4): using both the measuring thread
and the tracing. Indeed, the trace cannot be used as the
only source of information because it cannot account for
the overheads occurring outside the scope of the tracing.
Similarly, the measurement thread alone cannot capture the
reasons for the OS noise, and hence it does not provide
essential information to understand and reduce the OS-
related interference.

Hardware-induced noise. To identify hardware-induced
noise, introduced in Section 2, Linux includes a tracer
named hwlat. It works running a workload in the kernel,
with preemption and IRQs disabled, avoiding all the sources
of interference except the hardware and NMIs noise, which
cannot be masked. While running a busy-loop reading the
time, when hwlat detects a gap in two subsequent reads, it
reports a hardware-induced noise.

The resemblance of hwlat and osnoise is not a co-
incidence because the latter was indeed inspired to the
former tool. osnoise is also able to detect hardware noise.
Because it tracks all the tasks execution, when a sample
noise is detected without a respective increase in any of the
interference counters, it is safe to assume that a layer below
the operating system generated the noise.

time = Current time
-------> IRQ entry

increment local interference counter
<------- IRQ exit
int_counter = Read the interrupt counter
/* Interference counter not coherent

* with the time read */

Fig. 6: Code reentrancy problem when incrementing the
interference counter.

5.4 The osnoise interface

The ftrace interface. The osnoise was integrated into the
Linux kernel as a tracer part of ftrace in version 5.14. This
is the basic interface that allows users to start and stop the
workload, and set the parameters and tracing options.
The rtla interface. Since version 5.17, Linux includes the
real-time Linux analysis tool, named rtla. This is a meta-
tool that aims at analyzing the real-time properties of Linux
by exploiting its tracing features to provide information on
the causes of measurements. rtla includes an user-space
tool named rtla osnoise [44], transforming the tracer
into a benchmark-like tool. This tool works by configuring,
dispatching and collecting data from the osnoise tracer via
ftrace interface. The rtla osnoise can either collect the
periodic workload summary, creating a long run summary, or
create a histogram with data from the sample_threshold
tracepoint.

5.5 The osnoise internals

The osnoise tracer aims to measure possible sources of
noise at the single-digit µs scale, and this represents a
challenge when dealing with parallel and re-entrant code
as in the Linux kernel. This section presents some of these
challenges and how they have been tackled.

5.5.1 Task and memory model
osnoise aims to simulate applications built using the
SPMD model, presented in Section 2. When dispatched, the
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static u64 set_int_safe_time(struct osnoise_variables *osn_var, u64 *time) {
u64 int_counter;
do {

int_counter = local_read(&osn_var->int_counter);
barrier(); /* synchronize with interrupts */

*time = time_get();
barrier(); /* synchronize with interrupts */

} while (int_counter != local_read(&osn_var->int_counter));
return int_counter;

}

Fig. 7: Code excerpt of set_int_safe_time(): how osnoise deals with reentracy problems.

tracer creates a per-CPU kernel thread to run the osnoise
workload component. Each per-CPU thread has its affinity
configured to run on the target CPU only. All threads share
the same configuration that the user can update as the
workload runs. This data is only accessed outside the main
workload loop, thus not representing a problem for the
measurement phase. A mutex protects the configuration.
The runtime data utilized during the measurement phase
is organized on per-CPU structures, and the thread only
accesses the one related to the CPU where it is executing.

osnoise aims to simulate a user-space workload that
follows the rules reported in Section 2.1. Specifically, a user-
space workload on Linux can be preempted by all types of
OS tasks mentioned in Section 2. While there are methods to
temporarily disable thread preemption, softirqs, and inter-
rupts, they have some undesired drawbacks. For example,
disabling interrupts is a costly operation, and it should be
avoided in cases where overhead needs to be minimized,
like on the Linux tracing subsystem. Moreover, it is not pos-
sible to mask non-maskable interrupts (NMIs). Finally, with
such an operation, osnoise would influence the behavior
of the noise tasks. Therefore, osnoise has been developed
with the constraint of not using methods that prevent pre-
emption of any class of tasks while measuring the OS noise.
If the kernel is configured as non-preemptive, the osnoise
measurement thread would be non-preemptive too. In this
particular case, a fully-preemptive behavior is simulated by
adding a function to check for the need for re-scheduling
between two reads of the timer. This operation does not
represent a significant source of overhead because Linux
uses a single variable that informs whether there is a higher-
priority thread waiting to run.

5.5.2 Dealing with code reentrance

One of the main benefits of osnoise is the ability to asso-
ciate the number of interferences that lead to an observed
noise by the workload. This feature is essential to avoid
speculation concerning the events that caused a noise, lead-
ing the debugging to wrong directions and causing delays in
troubleshooting critical and costly systems. However, read-
ing the current time coherently with the interference counter is
not a straightforward operation when considering the pos-
sibility of preemption. For example, take into consideration
the pseudo-code in Figure 6. The interference counter would
account for one interrupt more than the number at the time
in which the timer was read. Even simple operations such
as incrementing a counter in a variable are not guaranteed
to be atomic on all architectures supported by Linux.

In osnoise, these problems have been solved using
mainly two solutions: local atomic variables and compiler bar-
riers. An excerpt from the current code is shown in Figure 7.

The interference counter is defined as a local atomic integer,
a atomic type of integer coherent in the local CPU. To ensure
that the current time is consistent with the interference counter,
the current time is read inside two reads of interference
counter. Additionally, compiler barriers are utilized to avoid
compiler optimizations that could rearrange the interference
counter read, moving the current time outside of protection.
A similar approach is used for other non-atomic operations,
such as computing the interference free noise for the osnoise
tracepoints shown in Figure 4. In this way, osnoise is
able to provide coherent information while avoiding more
costly methods, enabling measurements within one µs of
granularity required by NFV use-cases.

6 EXPERIMENTAL RESULTS

This section reports on the osnoise usage for the measure-
ment and trace of a system. The system is a Dell workstation
with an AMD Ryzen 9 5900 processor, with 12 cores and
24 threads. The system is configured with Fedora Linux
35 server and runs the kernel 5.15 patched with the PRE-
EMPT RT patchset. osnoise has been executed via rtla
osnoise tool, both to collect a summary of the OS noise
and a histogram of each noise occurrence.

The first considered configuration of the system has no
tuning applied and is so-called As-is. The system is said
to be Tuned when the best practices for CPU isolation are
applied. In this case, CPUs {0, 1} are reserved for house-
keeping work of users and the operating system tasks. CPUs
{2, . . . , 23} are reserved for the workload execution, and
osnoise is set to run on these CPUs. The system tuning
includes 1) set the performance CPUFreq governor8; 2) using
cpu isolation features; 3) enabling RCU callbacks offload
and nohz full configuration; and 4) moving all possible
kernel threads and IRQs to the CPUs {0, 1}. By default,
osnoise workload threads runs with the default’s task
priority (SCHED_OTHER with 0 nice). However, for the NFV
use case, it is common for the users to set a real-time
priority for the workload. To also evaluate this specific
scenario, additional experiments have been performed. In
the experiments marked as FIFO:1, the osnoise workload
has been set to run with priority 1 under SCHED_FIFO.

For the regular case (i.e., SCHED_OTHER with 0 nice) the
workload has been configured with default parameters, so

8. Linux CPUFreq: https://www.kernel.org/doc/Documentation/cpu-
freq/governors.txt.
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Fig. 8: Average percentage of OS noise observed by the
workload on different scenarios. Error bars represent the
range between minimum and maximum percentage.

it runs with one second runtime and period, attempting to
monopolize the CPU.

The FIFO:1 case required some additional system and
workload configuration. The system configuration includes
disabling the runtime throttling mechanism of Linux, allowing
the real-time threads to use more than 95% of CPU time,
and setting the ksoftirqd (thread responsible for softirq
processing when using PREEMPT RT) and RCU per-CPU
threads with FIFO 2 priority to avoid RCU [11] stalls. The
workload has been configured with a 10 seconds period,
and the runtime has been set to allow a 100 µs between
each period, allowing any starving thread to have a chance
to run. Finally, the tolerance threshold was configured to 1 µs.

6.1 Percentage of OS noise
A six-hours experiment has been conducted for all
tune/FIFO priority cases collecting the OS noise summary.
A summary of the percentage OS noise is shown in Figure 8.

The maximum observed total noise was 0.5484% with
the system As-is, while the minimum was 0.00001% for
both Tuned cases. It is also possible to notice the main factor
for OS noise reduction is provided by the CPU isolation
features. The reason is that most of the work left for isolated
CPUs is essential for the OS, mostly in the IRQ context.

It worth to highlight that these experiments have been
conducted with the PREEMPT RT kernel, which incurs ad-
ditional overheads on the average case to bound the worst-
case scheduling latencies. In this setup, Linux is able to
provide both low latency for interrupt-based workloads and
low OS noise for polling-based workloads in a single solu-
tion. This flexibility is fundamental for NFV deployments
with dynamic and diverse workloads in the same host.

6.2 OS noise occurrence analysis
A six-hours experiment has been conducted for all
tune/FIFO priority cases collecting a histogram of each de-
tected noise occurrence. This experiment is important for
the NFV use-case because a single long noise occurrence
might cause the overflow of queues in the network packets
processing. The results are presented in Figure 9.

With this experiment, it is possible to see the main prob-
lem of using the system As-is in Figure 9a. The osnoise
workload detected 230 out-of-scale noise samples, with the
maximum value as long as 13045 µs. Figure 9b also shows

that using FIFO:1 in the system As-is represents an easy-
to-use option to reduce the maximum single noise occur-
rence value. The reason being is that because the workload
causes starvation of non-real-time threads, these threads are
migrated to the CPUs with time available for them to run.

As-is using FIFO:1 however has two major drawbacks
when compared against the Tuned options with or without
using FIFO:1 in Figures 9c and 9d. The first is the high
count of noise occurrences. The Tuned experiment includes
the nohz_full option that reduces the occurrence of the
scheduler tick, reducing the execution of the ksoftirqd kernel
thread that checks for expired timers and activities that
follow. Another difference is the tail latency, which is lower
on the Tuned cases. This difference is explored in Section 6.3.

The results with system Tuned in Figure 9c and 9d
show that the tune dramatically changes the entries and
duration of each noise occurrence when compared with the
system As-is. Figures 9e and 9f have been added to better
visualize the Tuned cases.

The Tuned kernel was able to deliver consistent results,
with the kernel Tuned using FIFO:1 was able to provide
below 5 µs maximum single noise occurrence. That is
because background OS activities that run as threads are
deferred by the real-time scheduler, without creating a fault
in the system. For example, jobs dispatched on all CPUs
via kworkers threads that execute deferrable work [45].
However, these still need to have the possibility to run to
avoid major problems. Thus, a wise choice for the devel-
opment of high-performance applications with low latency
requirements is to be aware of this property and yield some
CPU time when it would not cause performance issues (for
instance, when network buffers are empty), even for a small
amount of time, like 100 µs every 10 seconds.

These experiments also serve to show the low impact
that the osnoise internals imposes in the evaluation, al-
lowing the user to receive information in the µs granularity
used by practitioners on other tools like cyclictest.

It is important to highlight that the results presented in
this section are only valid for this specific scenario. Different
hardware, CPU count, auxiliary operating system services,
and conditions will likely provide different results. Thus the
importance of such a tool, providing an integrated OS noise
benchmark and guidance for the fine tune of the system.

6.3 Using osnoise to trace sources of latency
The experiment of the system As-is with FIFO:1 pre-
sented an interesting result with regard to the tail latency, as
only few samples passing the 30 µs mark. To understand the
reasons behind these cases that go over 30 µs, the osnoise
tracer was set to trace the osnoise events, stopping the
tracer when a noise occurrence over 30 µs was detected.
The trace with sole osnoise events is shown in Figure 10.
It shows an interrupt noise, caused by the interrupt 62,
responsible for the eno1 ethernet driver. Right after the
ksoftirqd is scheduled, causing a long-duration noise oc-
currence. The ksoftirqd thread is responsible for running
the softirq jobs context in the PREEMPT RT kernel (recall
from Section 2.1 that the softirq context does not exist under
PREEMPT RT, and softirq jobs run in the thread context).

Following the evidence that the problem is caused by
softirqs, the sole events that provide information about
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(b) As-is using FIFO:1.
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(c) Tuned.
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(d) Tuned using FIFO:1.
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(e) Tuned - Zoom of Figure 9c.
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(f) Tuned using FIFO:1 - Zoom of Figure 9d.

Fig. 9: osnoise noise occurrence per-cpu histogram under different system setup, mixing CPU isolation tune and real-time
priority for the workload (less noise occurrence and less occurrence count is better).

softirqs were enabled, as selecting a small amount of tracing
events helps to avoid influencing too much in the timing
behavior of the system due to overhead. The trace again
reported a similar output in Figure 11. This trace shows that
the network receive (NET_RX) softirq was the reason for the
ksoftirqd activation. The NET_RX softirq is activated
by the network driver that is running in the same CPU. This
it is an side effect of the eno1 ethernet driver causing the in-
terrupt. Following this evidence, the IRQ 62 was configured
to fire in the CPUs [0 : 1]. With this configuration applied,
the experiment in Figure 9b was re-executed for six hours,
the results is shown in Figure 12. This configuration alone
was reposible to reduce the the tail latency to figures like
the system Tuned, with the debug facilitated by osnoise.

7 CONCLUSIONS AND FUTURE WORK

Network function virtualization and modern low latency
communications are creating the need for Linux systems
with low latency for both scheduling latency and OS noise.
These real-time HPC workloads require noise to be in the
order of a few tens of microseconds.

However, debugging these cases is not an easy task.
Workload-based tools are precise for measurements but do
not point to a root cause. Trace-based measurements provide
information about the cause but without an accurate picture
of the actual noise observed by the thread.

Practitioners use both methods together, but this requires
advanced knowledge of the tracing features, and it can often
mislead the investigation because the trace is not synchro-
nized with the workload or adds too much overhead.



ACCEPTED PAPER VERSION, PUBLISHED IN: IEEE TRANSACTIONS ON COMPUTERS, DOI: 10.1109/TC.2022.3187351 TCSI-2022-01-0094 ©2022 IEEE 11

osnoise/16-2373 [016] d.h2 127.490797: irq_noise: eno1:62 start 127.490793954 duration 2204 ns
ksoftirqd/16-129 [016] d..3 127.490844: thread_noise: ksoftirqd/16:129 start 127.490798012 duration 45816 ns
osnoise/16-2373 [016] .... 127.490844: sample_threshold: start 127.490793483 duration 50946 ns interference 2
osnoise/16-2373 [016] .... 127.490847: osnoise_main: stop tracing hit on cpu 16

Fig. 10: osnoise tracer finding source of latencies4.

osnoise/16-2501 [016] d.h2 533.347969: irq_noise: eno1:62 start 533.347965225 duration 3165 ns
ksoftirqd/16-129 [016] ..s. 533.347970: softirq_entry: vec=3 [action=NET_RX]
ksoftirqd/16-129 [016] ..s. 533.347994: softirq_exit: vec=3 [action=NET_RX]
ksoftirqd/16-129 [016] d..3 533.347995: thread_noise: ksoftirqd/16:129 start 533.347969964 duration 25438 ns
osnoise/16-2501 [016] .... 533.347996: sample_threshold: start 533.347964865 duration 30938 ns interference 2
osnoise/16-2501 [016] .... 533.347996: osnoise_main: stop tracing hit on cpu 16

Fig. 11: osnoise tracer finding source of latencies augmented with other events4.

2
5

10

15

20
23

n
o
is

e
 C

P
U

s

0 10 20 30 40 50 60 70 80 90
noise occurrence [µs]

0

5000000

10000000

15000000

o
c
cu

rr
e
n
c
e
 c

o
u
n
t

Fig. 12: As-is using FIFO:1 after moving the network IRQ as
suggest from trace in Figure 11.

The osnoise tool puts together the tracing and the
workload, providing precise information at low overhead
by processing and exporting only the necessary information
for pointing to the root causes of the latency, serving as a
good starting point for the investigation.

The experimental results show that the tool is able to
serve both as a tracer and benchmark tool, facilitated by
the usage of rtla osnoise interface to collect data. The
experiment shows that Linux can deliver extremely low OS
noise, achieving maximum sample noises as low as less than
5 µs. But more importantly, the tool is able to follow the
kernel, delivering results in the desired scale.

Both the osnoise tool and rtla osnoise interfaces
are an integral part of the Linux kernel, thus accessible for
the entire Linux user base.

Because the osnoise tracer uses the most basic building
blocks of the Linux tracing sub-system, it can be combined
with many other existing tracing tools, such as perfor-
mance counters provided via perf tool, or to be used with
graphical interfaces provided by LTTng and KernelShark.
This creates an end-less set of possibilities for future work,
extending the osnoise measurements to include data from
the memory/cache, to include workload-dependent meth-
ods, other clock sources, and energy-aware methods, for ex-
ample. Extending the analysis with a more formal approach
is another possibility, as well as conducting experimental
evaluations based on other real-time schedulers of Linux,
e.g., SCHED_DEADLINE.
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