
RTLA: Real Time Linux Analysis toolset

RTLA: Real Time Linux Analysis toolset

Daniel Bristot de Oliveira
Senior Principal Software Engineer,
Red Hat

RTLA: Real Time Linux Analysis toolset

Real-time Linux

▸ Linux has been used as an RTOS - it is a fact!

▸ There are multiple reasons for people to use it

･ Software stack and availability

･ Man-power

▸ But also because Linux achieves the desired timing behavior

▸ Some key features to help on that are:

･ The fully preemptive mode

･ Real-time scheduling

･ SCHED_DEADLINE

RTLA: Real Time Linux Analysis toolset

Real-time Linux testing

▸ One of the problems, however, is the way that we show the timing properties of Linux

▸ Linux has been tested using blackbox tools that mimic typical workload:

･ Event driven application: cyclictest

･ Polling like application: sysjitter/oslat

▸ They report a "latency," and this is important for many use-cases. For example:

･ The kernel-rt has to deliver < 150 us cyclictest latency under stress

･ cyclictest latency of 10~20 us on isolated & tuned systems

RTLA: Real Time Linux Analysis toolset

Real-time Linux testing

▸ The blackbox approach works, but it has some drawbacks

･ It gives no root cause analysis

▸ The root cause analysis is generally done using tracing

･ But tracing is not that accessible for non-experts

▸ Real-time to the masses

･ All kernel developers will have to run RT analysis

･ But not all are interested in learning all the details

RTLA: Real Time Linux Analysis toolset

RTLA: a new approach

RTLA: Real Time Linux Analysis toolset

Real-time Linux Approach

▸ RTLA follows a white-box approach

▸ It integrates the workload and tracing

▸ In kernel:

･ Integrated tracer and workload

▸ In user-space:

･ Easy to use interface

･ Data analysis

RTLA: Real Time Linux Analysis toolset

Kernel tracers

RTLA: Real Time Linux Analysis toolset

Kernel tracers

▸ RTLA uses two kernel tracers

▸ osnoise tracer

･ Measures the Operating System noise/interference from high prio tasks

･ IOW: sysjitter/oslat on steroids

▸ timerlat tracer

･ Measures the activation delay of a timer triggered task

･ IOW: cyclictest on steroids

RTLA: Real Time Linux Analysis toolset

osnoise tracer

RTLA: Real Time Linux Analysis toolset

Operating system noise

▸ The Operating System Noise (OS Noise) is a well defined High Performance Computing (HPC)

metric

▸ It is the amount of interference experienced by an application due to (not only) operating

system activities

▸ It is generally a fine grained metric

RTLA: Real Time Linux Analysis toolset

Operating System noise

▸ Generally, HPC workloads are composed

of parallel jobs

▸ The system is configured with CPUs

dedicated to the jobs

▸ A dispatcher launches jobs to these CPUS

and waits for completion

DISPATCHER

Job 2

Job 3

...

Job n

HOUSEKEEP

Job 1

DoneWait

RTLA: Real Time Linux Analysis toolset

Operating System noise

▸ The side effects of the OS Noise to the

workload can influence the total response

time of the system.

･ Both in parallel and pipeline workloads

▸ Some critical HPC RT workloads requires

OS Noise to be less than 20 us.

DISPATCHER

Job 2

Job 3

...

Job n

HOUSEKEEP

Job 1

DoneWait

RTLA: Real Time Linux Analysis toolset

OS Noise tracer

▸ osnoise is a kernel tracer that also dispatches the workload

･ The workload runs in the kernel

▸ It mimics HPC workload

･ One thread per CPU

･ Detects noise by computing the delta between two consecutive reads of the time

▸ It has integrated tracing events to identify the source of the noise

･ In kernel lockless synchronization -> no false positives

▸ It detects high priority tasks that interfere the osnoise workload

･ osnoise can also detect hw/vm induced latency

RTLA: Real Time Linux Analysis toolset

Using the osnoise tracer
[root@f32 ~]# cd /sys/kernel/tracing/
[root@f32 tracing]# echo osnoise > current_tracer
[root@f32 tracing]# cat trace
tracer: osnoise
#
_-----=> irqs-off
/ _----=> need-resched
| / _---=> hardirq/softirq
|| / _--=> preempt-depth MAX
|| / SINGLE Interference counters:
|||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+
TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD
| | | |||| | | | | | | | | | |
 <...>-859 [000] 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1
 <...>-860 [001] 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3
 <...>-861 [002] 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21
 <...>-862 [003] 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0
 <...>-863 [004] 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41
 <...>-864 [005] 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2
 <...>-865 [006] 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1
 <...>-866 [007] 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19

RTLA: Real Time Linux Analysis toolset

OS Noise tracer options

▸ Configuration files inside /sys/kernel/trace/osnoise

･ cpus: CPUs at which an osnoise thread will execute.

･ period_us: the period of the osnoise thread.

･ runtime_us: how long an osnoise thread will look for noise in the period

･ stop_tracing_us: stop system tracing if a single noise is >= than set here

･ stop_tracing_total_us: stop system tracing if total noise is >= than set here

▸ /sys/kernel/trace/tracing_threshold

･ The minimum delta between two time() reads to be considered as noise, in us.

･ When set to 0, the default value will will be used, which is currently 5 us.

RTLA: Real Time Linux Analysis toolset

osnoise analysis

RTLA: Real Time Linux Analysis toolset

What can cause OS Noise?

▸ Any sort of task tha interference (preempt) the osnoise workload

▸ Linux task abstractions:

･ NMI

･ IRQs

･ Softirqs

･ Threads

▸ But also the hardware can interfere

･ SMIs

･ VMs

RTLA: Real Time Linux Analysis toolset

osnoise tracepoints

▸ One tracepoint for each task abstraction:

･ osnoise:nmi_noise

･ osnoise:irq_noise

･ osnoise:softirq_noise

･ osnoise:thread_noise

▸ They report the amount of noise

･ The values are free from nested interference

･ e.g., a thread_noise noise is free from any IRQ/Softirq/NMI interference that it could face

▸ osnoise:sample_threshold: the total noise observed by the workload

RTLA: Real Time Linux Analysis toolset

Using osnoise tracepoints & root cause
[root@f32 ~]# cd /sys/kernel/tracing/
[root@f32 tracing]# echo osnoise > current_tracer
[root@f32 tracing]# echo osnoise > set_event
[root@f32 tracing]# echo 8 > osnoise/stop_tracing_us
[root@f32 tracing]# cat trace
[...]
 osnoise/8-960 [007] d.h. 5789.857530: irq_noise: local_timer:236 start 5789.857527123 duration 1867 ns
 osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns
 osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns
migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns
 osnoise/8-961 [008] 5789.858413: sample_threshold: start 5789.858404555 duration 8812 ns interferences 2

RTLA: Real Time Linux Analysis toolset

timerlat tracer

RTLA: Real Time Linux Analysis toolset

Timer latency

▸ Timer latency has been used as a metric by the real-time Linux kernel developers

･ cyclictest is indeed a timer testing tool

▸ It empirically measures the observed scheduling latency of the highest priority thread - or a

thread at any priority

▸ timerlat tracer measure the same metric, but it is integrated with tracing.

RTLA: Real Time Linux Analysis toolset

Task activation delay

Set a timer a t tΔ = t' - t

RTLA: Real Time Linux Analysis toolset

Task activation delay

Set a timer a t t . t' . . . t'' -> Δ' = t' - t
 Δ'' = t'' - t

RTLA: Real Time Linux Analysis toolset

Using the timerlat tracer
[root@f32 ~]# cd /sys/kernel/tracing/
[root@f32 tracing]# echo timerlat > current_tracer
[root@f32 tracing]# cat trace
tracer: timerlat
#
_-----=> irqs-off
/ _----=> need-resched
| / _---=> hardirq/softirq
|| / _--=> preempt-depth
|| /
|||| ACTIVATION
TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY
| | | |||| | | | |
 <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns
 <...>-867 [000] 54.029339: #1 context thread timer_latency 11700 ns
 <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns
 <...>-868 [001] 54.029353: #1 context thread timer_latency 9820 ns
 <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns
 <...>-867 [000] 54.030330: #2 context thread timer_latency 3070 ns
 <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns
 <...>-868 [001] 54.030347: #2 context thread timer_latency 4351 ns

RTLA: Real Time Linux Analysis toolset

Timerlat tracer options

▸ Configuration files inside /sys/kernel/trace/osnoise

･ cpus: CPUs at which a timerlat thread will execute.

･ period_us: the timer period

･ stop_tracing_us: stop the system tracing if IRQ latency>= than set here

･ stop_tracing_total_us: stop the system tracing if thread latency is >= than set here

･ print_stack: save the IRQ stack trace to print in case of latency >= than set

RTLA: Real Time Linux Analysis toolset

timerlat analysis

RTLA: Real Time Linux Analysis toolset

What can cause timer latency?

▸ Linux task abstractions:

･ NMI

･ IRQs

･ softirqs

･ Higher priority thread

▸ Previously running thread with preemption || irq disabled

RTLA: Real Time Linux Analysis toolset

osnoise tracepoints

▸ One tracepoint for each task abstraction:

･ osnoise:nmi_noise

･ osnoise:irq_noise

･ osnoise:softirq_noise

･ osnoise:thread_noise

▸ They report the amount of noise

▸ softirq and thead noise account from the timer IRQ handler on

･ they measure the noise added to timer thread latency

RTLA: Real Time Linux Analysis toolset

Using the timerlat tracer
[root@f32 ~]# cd /sys/kernel/tracing/
[root@f32 tracing]# echo timerlat > current_tracer
[root@f32 tracing]# echo 1 > events/osnoise/enable
[root@f32 tracing]# echo 500 > osnoise/stop_tracing_total_us
[root@f32 tracing]# echo 500 > osnoise/print_stack
[root@f32 tracing]# tail -21 per_cpu/cpu7/trace
 insmod-1026 [007] dN.h1.. 200.201948: irq_noise: local_timer:236 start 200.201939376 duration 7872 ns
 insmod-1026 [007] d..h1.. 200.202587: #29800 context irq timer_latency 1616 ns
 insmod-1026 [007] dN.h2.. 200.202598: irq_noise: local_timer:236 start 200.202586162 duration 11855 ns
 insmod-1026 [007] dN.h3.. 200.202947: irq_noise: local_timer:236 start 200.202939174 duration 7318 ns
 insmod-1026 [007] d...3.. 200.203444: thread_noise: insmod:1026 start 200.202586933 duration 838681 ns
 timerlat/7-1001 [007] 200.203445: #29800 context thread timer_latency 859978 ns
 timerlat/7-1001 [007]1.. 200.203446: <stack trace>
=> timerlat_irq
=> __hrtimer_run_queues
=> hrtimer_interrupt
=> __sysvec_apic_timer_interrupt
[...continue...]

RTLA: Real Time Linux Analysis toolset

Using the timerlat tracer
[...]
 insmod-1026 [007] d..h1.. 200.202587: #29800 context irq timer_latency 1616 ns
 insmod-1026 [007] dN.h2.. 200.202598: irq_noise: local_timer:236 start 200.202586162 duration 11855 ns
 insmod-1026 [007] dN.h3.. 200.202947: irq_noise: local_timer:236 start 200.202939174 duration 7318 ns
 insmod-1026 [007] d...3.. 200.203444: thread_noise: insmod:1026 start 200.202586933 duration 838681 ns
 timerlat/7-1001 [007] 200.203445: #29800 context thread timer_latency 859978 ns
 timerlat/7-1001 [007]1.. 200.203446: <stack trace>
=> timerlat_irq
=> __hrtimer_run_queues
=> hrtimer_interrupt
=> __sysvec_apic_timer_interrupt
=> asm_call_irq_on_stack
=> sysvec_apic_timer_interrupt
=> asm_sysvec_apic_timer_interrupt
=> delay_tsc
=> dummy_load_1ms_pd_init
=> do_one_initcall
=> do_init_module
=> __do_sys_finit_module
=> do_syscall_64
=> entry_SYSCALL_64_after_hwframe

RTLA: Real Time Linux Analysis toolset

RTLA

RTLA: Real Time Linux Analysis toolset

Real-time Linux Analysis

▸ rtla is a user-space tool that serves as front-end for setup, tracing and data analysis

▸ It transforms the tracers into a benchmark tool

▸ It is in C, hosted inside the tools/tracing/rtla in the kernel repo

▸ Two tools in the initial implementation:

･ rtla osnoise: measures the operating system noise

･ rtla timerlat: measures the timer latency

RTLA: Real Time Linux Analysis toolset

rtla osnoise

▸ rtla osnoise is an interface to osnoise tracer

･ Adds more options to the tracer

･ e.g., setting priority to threads

･ Interface for other tracing features like tracepoints and histograms

▸ Two different modes:

･ osnoise top: shows an interactive view of the osnoise summary output

･ osnoise hist: shows a histogram of the osnoise sample tracepoint

RTLA: Real Time Linux Analysis toolset

rtla timerlat

▸ rtla timerlat is an interface to timerlat tracer

･ Adds more options to the tracer

･ e.g., setting priority to threads

･ Interface for other tracing features like tracepoints and histograms

▸ Two different modes:

･ timerlat top: shows an interactive view of the osnoise summary output

･ timerlat hist: shows a histogram of the osnoise sample tracepoint

RTLA: Real Time Linux Analysis toolset

rtla timerlat: how easy it is?

▸ I am a user testing my kernel-rt setup, and I want to measure the latency and generate a report if

my latency is higher than 50 us?

▸ Before rtla:

･ Using cyclictest with stop tracing

･ Instructions about setting tracing (asking in IRC or mailing list?)

･ Figuring things out from tracing, computing execution time by hand/scripts.

▸ How much easier is my life using rtla?

RTLA: Real Time Linux Analysis toolset

rtla timerlat: how easy it is?

▸ timerlat top -a 50

RTLA: Real Time Linux Analysis toolset

rtla timerlat: how easy it is?

▸ timerlat top -a 50

▸ It measures latency

▸ Sets up a tracing session

▸ Enables the minimum required trace events

･ osnoise: events

･ stacktrace for the IRQ handler

▸ Stops the trace if a 50 us latency is hit, saving the result to a timerlat_trace.txt

RTLA: Real Time Linux Analysis toolset

RTLA is the automation of an expert
analysis

RTLA: Real Time Linux Analysis toolset

RTLA demo

RTLA: Real Time Linux Analysis toolset

Demo:
https://www.youtube.com/watch?v=3sGM076mLRQ&t=1s

https://www.youtube.com/watch?v=3sGM076mLRQ&t=1s
http://www.youtube.com/watch?v=3sGM076mLRQ

RTLA: Real Time Linux Analysis toolset

RTLA status

▸ RTLA is upstream!

･ Tracers since 5.14

･ RTLA since 5.17

▸ Tracers enabled on Fedora/CentOS/Red Hat

▸ RTLA package:

･ Ready on Fedora

･ On the way on SUSE/Ubuntu (if not ther already)

▸ More tools and analysis are on the way

･ rtsl is next -> https://bristot.me/demystifying-the-real-time-linux-latency/

https://bristot.me/demystifying-the-real-time-linux-latency/

RTLA: Real Time Linux Analysis toolset

Thanks

