
rtla: finding the sources of OS noise on Linux

Daniel Bristot de Oliveira
Senior Principal Software Engineer

RTLA: finding sources of OS
noise on Linux

1

rtla: finding the sources of OS noise on Linux

Real-time Linux

▸ Linux has been used as an RTOS - it is a fact!

▸ There are multiple reasons for people to use it
･ Software stack and availability

･ Man-power

▸ But also because Linux achieves the desired timing behavior

▸ Some key features to help on that are:
･ The fully preemptive mode

･ Real-time scheduling

･ SCHED_DEADLINE

2

rtla: finding the sources of OS noise on Linux

Who am I?

Who am I?

3

About me:

https://bristot.me

● I am Daniel 'bristot' de Oliveira

● Senior Principal Software Engineer at Red Hat

○ Kernel developer in the real-time and scheduling team

○ Help to maintain rtla, tracers for rt/low-latency, and SCHED_DEADLINE

● Affiliate researcher at the Retis Lab/Scuola Superiore Sant'Anna

○ I have a Ph.D. in Automation Engineering & Real-time Embedded systems

○ Research about real-time and runtime verification

○ I'd say that this is my hobby

rtla: finding the sources of OS noise on Linux

Agenda

Agenda

4

All these tools are integral

part of the Linux kernel,

and their documentation

can be found in the Linux

kernel documentation.

● Motivation: RT and HPC - a real world request

● Characterization of the metrics

● Current and new approach for measurements and debugging

● The kernel tracers

● RTLA

● DEMO

● Some OS noise measurements

rtla: finding the sources of OS noise on Linux

Real-time and HPC

Linux as Real-time and HPC OS

5

The PREEMPT_RT is a

patch set that improves

the full preemptive mode

of Linux. The patch set is

on the final steps of the

merge. So, Linux itself can

be considered a real-time

OS on its own.

● Linux has been used as an RTOS - it is a fact!

● Linux dominates the TOP 500 HPC list

● There are multiple reasons for people to use it

● Software stack and availability

● Human resources

● Flexibility

● Both are high-performance setups but with different targets

● RT focuses determinism, generally event-driven

● HPC focuses on high-throughput, generally single-program multiple-data

(SPMD)

rtla: finding the sources of OS noise on Linux

Real-time and HPC

Real-time and HPC: a real-world request

6

It is not easy to debug

`10s of microseconds

noise cases because

debugging can easily cost

more than the goal itself.

● Network Function Virtualization relies on HPC like setup

○ DPDK Poll Mode Driver

○ CPU isolation is set up to provide maximum throughput

○ Attempt to avoid any source of noise

● 5G is enabling low-latency event-driven communication

○ 10s of microseconds for vRAN

● NFV for 5G requires the best from RT and HPC setup

rtla: finding the sources of OS noise on Linux

Real-time and HPC

Real-time and HPC: a real-world request

7

The lack of tools that can

unambiguously point to a

root cause creates a

nightmare for those

supporting such

environment.

Speculations is your worst

enemy.

● Linux has good CPU isolation features

● But isolation is not perfect as there is still residual work

● These scenarios only get worse when trying to use more complex and

dynamic platforms like Kubernetes

● HPC-RT workload mixed with regular workload

● The regular workload can indirectly cause noise

● Moreover, the hardware itself can cause such noise

● Without any traceable evidence

rtla: finding the sources of OS noise on Linux

RT and HPC metrics
characterization

Introduction

8

rtla: finding the sources of OS noise on Linux

OS Noise

OS Noise

9

● Generally, HPC workloads are composed of parallel jobs

● The system is configured with CPUs dedicated to the jobs

● A dispatcher lunches jobs to these CPUs and waits for completion.

In real-time terms, the OS

Noise can be see as the

interference of a high

priority OS task to the

user application.DISPATCHER

Job 2

Job 3

...

Job n

HOUSEKEEP

Job 1

DoneWait

rtla: finding the sources of OS noise on Linux

OS Noise

OS Noise

10

● In practice, other OS and user workloads can disturb the HPC job,

creating the so called operating system (OS) noise. The same problem

replicates for serial

pipelines, with OS Noise

influencing in the response

time - real-time metric.

DISPATCHER

Job 2

Job 3

...

Job n

HOUSEKEEP

Job 1

DoneWait

rtla: finding the sources of OS noise on Linux

Sources of OS Noise

Sources of OS Noise

11

It doesn't matter if it is an

OS/Kernel thread or an

User/User space thread.

From the scheduler

perspective they are

equivalent.

● Any "task" abstraction on the OS that can preempt the HPC job

● On Linux:

○ NMIs

○ IRQs

○ Softirqs

○ Threads

● Hardware & Virtualization sources of noise

○ SMIs

○ VM preemption by the host

○ ...

rtla: finding the sources of OS noise on Linux

Activation latency

Activation latency

12

It is the delta between the

time that the timer was set

and the time in which the

thread after activated

could read the current

time.

Set a timer a t and
goes to sleep tΔ = t' - t

● Activation latency is the delay on replying to an external event

● Can be simulated with an external timer

rtla: finding the sources of OS noise on Linux

Sources of activation latency

Sources of timer latency

13

For a formal definition,

please see:

● Any "task" abstraction on the OS that can preempt the RT job

● All HPC metrics (OS tasks, hardware latencies)

● Low priority thread running with preemptions or IRQ off

○ Well, it is a little bit more complex than that... See ->

rtla: finding the sources of OS noise on Linux

OS Noise and Activation Latency

OS Noise and Activation latency

14

For low latency HPC,

activation latency is also a

problem.
DISPATCHER

Job 2

Job 3

...

Job n

HOUSEKEEP

Job 1

DoneWait

rtla: finding the sources of OS noise on Linux

Current approach

Introduction

15

rtla: finding the sources of OS noise on Linux

Current approach

Current approach

16

● Nowadays, practitioners use a set of black-box tools that mimic typical

workload:

● Event-driven application: cyclictest

● Polling like application: sysjitter/oslat

● They report a "latency," and this is important for many use-cases. For

example:

● The kernel-rt has to deliver < 150 us cyclictest latency under stress

● cyclictest latency of 10~20 us on isolated & tuned systems.

rtla: finding the sources of OS noise on Linux

Current approach

Linux Tracing and black-box testing

17

● If a bad value happens, you need to start getting the hands dirt

● The developer/practitioner needs try to understand the root cause

○ It is hard to do when you have someone else operating the machine

● Manual interpretation of a lot of data

○ Speculation goes on (many times misleading)

There are problems that a

really difficult to

reproduce, so it is easy to

get mislead by different

problems. Speculation is a

real problem without

precise information.

rtla: finding the sources of OS noise on Linux

Linux Tracing

Linux Tracing

18

● There are multiple ways to observe Linux runtime behavior

● One can use top command to monitor CPU usage

● But for a low overhead of fine-grained observation, there is nothing

better than tracing

● Linux has a powerful set of tracing tools

● It is possible to trace all functions

● It is possible to trace dynamic events

● It is possible to extend it

rtla: finding the sources of OS noise on Linux

Linux Tracing

Linux Tracing

19

● Linux tracing is available on production systems

● They are optimized to the state of the art

● They cause no overhead when disabled

● But the overhead can be noticeable when too much tracing is done

rtla: finding the sources of OS noise on Linux

Linux Tracing

Linux Tracing and black-box testing

20

● It is possible to observe black-box testing tools using trace

● The problem is defining what is important to trace

● Obtaining the maximum of information with the minimum possible

overhead

One could enable all

traceable events, but the

analysis is impractical due

to the amount of

information, and additional

overhead.

rtla: finding the sources of OS noise on Linux

A new approach

A new approach

21

rtla: finding the sources of OS noise on Linux

A new approach

A new approach

22

● Measuring without tracing is not productive

● Without always tracing, you never know if the problem you faced in the

first place is the same one you are seeing while tracing.

○ That is especially hard when the target values are tight, and a lot of

information is traced.

● After 10+ years of doing this, the trace became a mechanical thing:

○ irq events, sched: events, compute deltas.

● Can't we join these two things?

One could enable all

traceable events, but the

analysis is impractical due

to the amount of

information, and additional

overhead - noticeable at

10s of us scale.

rtla: finding the sources of OS noise on Linux

A new approach

Tracing + Workload

23

● osnoise and timerlat are kernel tracers that also dispatches the

workload

● The workload runs in the kernel:

○ osnoise: A busy-loop kernel thread that reads time() in a loop

■ Reports problem when time()' - time() > threshold - aka noise.

○ timerlat: A periodic task that is awakened by an hrtimer

■ Reports IRQ latency and Thread latency

There is a DEMO video

later on...

rtla: finding the sources of OS noise on Linux

osnoise and timerlat

osnoise: tracepoints

24

● The tracers provided a new set of tracepoints that automatize the

trace:

● osnoise:nmi_noise/irq_noise/softirq_noise/thread_noise:

● Report the interference of tasks to the tracer workload

● Account for the interference and report net values of it.

● The osnoise: tracepoints work by hooking to existing events

● Instead of tracing irq_entry & irq_exit, osnoise:irq_noise reports the

delta

● The tracers can also collect other information such as stack traces

Tracepoints are one of the

most versatile tracing

methods. There are

multiple ways to consume

a tracepoint output, and it

is also possible to run code

on tracepoints!

rtla: finding the sources of OS noise on Linux

osnoise and timerlat

Benefits of the selected approach

25

● The workload and the trace are synchronized

● The workload can have atomic access to information collected by the

trace

● E.g., osnoise workload also reports the $ of interference that happens

between two time() reads

● Precise information (no false positives/speculation)

● Minimum overhead:

● The osnoise: tracepoints reduce the amount of events by a half

● Only the necessary information is exported via tracepoints

osnoise and timerlat

tracers are already

enabled on multiple Linux

Distro, for example on

Fedora/CentOS/Red Hat

and on OpenSUSE/SLE.

rtla: finding the sources of OS noise on Linux

osnoise tracer

The tracers

26

rtla: finding the sources of OS noise on Linux

osnoise

OS Noise tracer

27

● osnoise is a kernel tracer that also dispatches the workload

● The workload runs in the kernel

● Mimics HPC workload

● One thread per CPU

● It detects high priority tasks that interfere with the osnoise workload

● osnoise can also detect hw/vm induced latency

The tracer is inspired on

hwlat tracer.

rtla: finding the sources of OS noise on Linux

osnoise

OS Noise tracer: summary report

28 The tracer is inspired on hwlat tracer.

[root@f32 ~]# cd /sys/kernel/tracing/
[root@f32 tracing]# echo osnoise > current_tracer
[root@f32 tracing]# cat trace
tracer: osnoise
#
_-----=> irqs-off
/ _----=> need-resched
| / _---=> hardirq/softirq
|| / _--=> preempt-depth MAX
|| / SINGLE Interference counters:
|||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+
TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD
| | | |||| | | | | | | | | | |
 <...>-859 [000] 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1
 <...>-860 [001] 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3
 <...>-861 [002] 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21
 <...>-862 [003] 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0
 <...>-863 [004] 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41
 <...>-864 [005] 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2
 <...>-865 [006] 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1
 <...>-866 [007] 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19

rtla: finding the sources of OS noise on Linux

osnoise

OS Noise tracer: options

29

● Configuration files inside /sys/kernel/trace/osnoise

○ cpus: CPUs at which a osnoise thread will execute.

○ period_us: the period of the osnoise thread.

○ runtime_us: how long an osnoise thread will look for noise in the period

○ stop_tracing_us: stop the system tracing if a single noise is >= than set here

○ stop_tracing_total_us: stop the system tracing if total noise is >= than set here

● /sys/kernel/trace/tracing_threshold

○ The minimum delta between two time() reads to be considered as noise, in us.

○ When set to 0, the default value will will be used, which is currently 5 us.

The tracer is inspired on hwlat tracer.

rtla: finding the sources of OS noise on Linux

osnoise

OS Noise tracer: fine-grained tracing

30 The tracer is inspired on hwlat tracer.

[root@f32 ~]# cd /sys/kernel/tracing/
[root@f32 tracing]# echo osnoise > current_tracer
[root@f32 tracing]# echo osnoise > set_event
[root@f32 tracing]# echo 8 > osnoise/stop_tracing_us
[root@f32 tracing]# cat trace
[...]
 osnoise/8-960 [007] d.h. 5789.857530: irq_noise: local_timer:236 start 5789.857527123 duration 1867 ns
 osnoise/8-961 [008] d.h. 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns
 osnoise/8-961 [008] dNh. 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns
migration/8-54 [008] d... 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns
 osnoise/8-961 [008] 5789.858413: sample_threshold: start 5789.858404555 duration 8812 ns interferences 2

rtla: finding the sources of OS noise on Linux

osnoise

hw noise

31

● As the osnoise tracer tracks all sources of noise:

○ NMI

○ IRQs

○ softirqs

○ threads
● Any noise sample that is not classified as OS Noise, is then a hardware

(or VM) noise.

hwlat tracer is a more

specialized tool. It works

with interruptions

disabled, so it can only be

interfered by NMIs and

hardware itself.

osnoise is sufficient, but

not necessary, to detect

hw noise. Being sufficient

is enough to reduce time

debugging time.

rtla: finding the sources of OS noise on Linux

osnoise

OS Noise tracer: hw noise

32 The tracer is inspired on hwlat tracer.

[root@f32 ~]# cd /sys/kernel/tracing/
[root@f32 tracing]# echo osnoise > current_tracer
[root@f32 tracing]# cat trace
tracer: osnoise
#
_-----=> irqs-off
/ _----=> need-resched
| / _---=> hardirq/softirq
|| / _--=> preempt-depth MAX
|| / SINGLE Interference counters:
|||| RUNTIME NOISE % OF CPU NOISE +-----------------------------+
TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD
| | | |||| | | | | | | | | | |
 <...>-859 [000] 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1
 <...>-860 [001] 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3
 <...>-861 [002] 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21
 <...>-862 [003] 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0
 <...>-863 [004] 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41
 <...>-864 [005] 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2
 <...>-865 [006] 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1
 <...>-866 [007] 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19

rtla: finding the sources of OS noise on Linux

osnoise

OS Noise tracer: hw noise

33 The tracer is inspired on hwlat tracer.

[root@x1 osnoise]# cd /sys/kernel/debug/tracing/
[root@x1 tracing]# echo osnoise > current_tracer
[root@x1 tracing]# echo osnoise > set_event
[root@x1 tracing]# cat per_cpu/cpu1/trace | grep -B 2 "interference 0"
[...]
 osnoise/1-32160 [001] d.h1. 31240.380886: irq_noise: thermal_apic:250 start 31240.380884026 duration 1715 ns
 osnoise/1-32160 [001] 31240.380886: sample_threshold: start 31240.380883588 duration 2763 ns interference 1
 osnoise/1-32160 [001] 31240.381105: sample_threshold: start 31240.381090803 duration 14384 ns interference 0

rtla: finding the sources of OS noise on Linux

timerlat tracer

osnoise and timerlat

34

rtla: finding the sources of OS noise on Linux

timerlat

Timer latency

35

● The timer latency has been used as a metric by the real-time Linux

kernel developers

● cyclictest is indeed a timer testing tool

● It empirically measures the observed scheduling latency of the highest

priority thread - or a thread at any priority

● timerlat tracer measure the same metric, but it is integrated with

tracing.

The usage of the timer

latency to measure the

wakeup latency is a

controversial topic.

See this:

rtla: finding the sources of OS noise on Linux

timerlat

Timer latency: Thread latency

36

It is the delta between the

time that the timer was set

and the time in which the

thread after activated

could read the current

time.

Set a timer a t tΔ = t' - t

rtla: finding the sources of OS noise on Linux

timerlat

Timer latency: IRQ and Thread

37

Because timerlat is in the

kernel, it has a special IRQ

handler that also notifies

the IRQ activation latency

Set a timer a t t . t' . . . t'' -> Δ' = t' - t
 Δ'' = t'' - t

rtla: finding the sources of OS noise on Linux

timerlat

Timerlat tracer: summary output

38 The tracer is inspired on hwlat tracer.

[root@f32 ~]# cd /sys/kernel/tracing/
[root@f32 tracing]# echo timerlat > current_tracer
[root@f32 tracing]# cat trace
tracer: timerlat
#
_-----=> irqs-off
/ _----=> need-resched
| / _---=> hardirq/softirq
|| / _--=> preempt-depth
|| /
|||| ACTIVATION
TASK-PID CPU# |||| TIMESTAMP ID CONTEXT LATENCY
| | | |||| | | | |
 <idle>-0 [000] d.h1 54.029328: #1 context irq timer_latency 932 ns
 <...>-867 [000] 54.029339: #1 context thread timer_latency 11700 ns
 <idle>-0 [001] dNh1 54.029346: #1 context irq timer_latency 2833 ns
 <...>-868 [001] 54.029353: #1 context thread timer_latency 9820 ns
 <idle>-0 [000] d.h1 54.030328: #2 context irq timer_latency 769 ns
 <...>-867 [000] 54.030330: #2 context thread timer_latency 3070 ns
 <idle>-0 [001] d.h1 54.030344: #2 context irq timer_latency 935 ns
 <...>-868 [001] 54.030347: #2 context thread timer_latency 4351 ns

rtla: finding the sources of OS noise on Linux

timerlat

timerlat tracer options

39

● Configuration files inside /sys/kernel/trace/osnoise

○ cpus: CPUs at which a timerlat thread will execute.

○ period_us: the timer period

○ stop_tracing_us: stop the system tracing if IRQ latency>= than set here

○ stop_tracing_total_us: stop the system tracing if thread latency is >= than set here

○ print_stack: save the IRQ stack trace to print in case of latency >= than set

rtla: finding the sources of OS noise on Linux

timerlat

What can cause timer latency?

40

● Linux's task abstractions:

○ NMI

○ IRQs

○ softirqs

○ Higher priority thread

● Previously running thread with preemption || irq disabled

Kernel has multiple

preemption models. But

also the fully preemptive

mode can suffer from

preemption delays

because preemption can

be temporarily disabled.

rtla: finding the sources of OS noise on Linux

timerlat

timerlat tracer: stack trace of preempt disable

41

[root@f32 ~]# cd /sys/kernel/tracing/
[root@f32 tracing]# echo timerlat > current_tracer
[root@f32 tracing]# echo 1 > events/osnoise/enable
[root@f32 tracing]# echo 500 > osnoise/stop_tracing_total_us
[root@f32 tracing]# echo 500 > osnoise/print_stack
[root@f32 tracing]# tail -21 per_cpu/cpu7/trace
 insmod-1026 [007] dN.h1.. 200.201948: irq_noise: local_timer:236 start 200.201939376 duration 7872 ns
 insmod-1026 [007] d..h1.. 200.202587: #29800 context irq timer_latency 1616 ns
 insmod-1026 [007] dN.h2.. 200.202598: irq_noise: local_timer:236 start 200.202586162 duration 11855 ns
 insmod-1026 [007] dN.h3.. 200.202947: irq_noise: local_timer:236 start 200.202939174 duration 7318 ns
 insmod-1026 [007] d...3.. 200.203444: thread_noise: insmod:1026 start 200.202586933 duration 838681 ns
 timerlat/7-1001 [007] 200.203445: #29800 context thread timer_latency 859978 ns
 timerlat/7-1001 [007]1.. 200.203446: <stack trace>
=> timerlat_irq
=> __hrtimer_run_queues
=> hrtimer_interrupt
=> __sysvec_apic_timer_interrupt
=> asm_call_irq_on_stack
=> sysvec_apic_timer_interrupt
=> asm_sysvec_apic_timer_interrupt
=> delay_tsc
=> dummy_load_1ms_pd_init
=> do_one_initcall
=> do_init_module
=> __do_sys_finit_module
=> do_syscall_64
=> entry_SYSCALL_64_after_hwframe

rtla: finding the sources of OS noise on Linux

RTLA

rtla

42

rtla: finding the sources of OS noise on Linux

rtla: real-time linux analysis

Real-time Linux Analysis!

43

● RTLA is a meta-tool that includes a set of commands that aims to

analyze the real-time properties of Linux.

● rtla is a user-space tool that serves as the front-end for setup,

tracing, and interpretation of data.

● It is in C, hosted inside the kernel source.

It is a meta tool because it

does not aim to do only

one analysis, but to

become a tool set, home

for multiple types of

analysis.

rtla: finding the sources of OS noise on Linux

rtla: real-time linux analysis

rtla osnoise
● rtla osnoise is an interface for osnoise tracer

● Two different modes:

○ osnoise top: shows an interactive view of the osnoise summary output

○ osnoise hist: shows a histogram of the osnoise sample tracepoint

44

The tool can be called

either using "rtla osnoise"

or "osnoise" only.

rtla: finding the sources of OS noise on Linux

rtla: real-time linux analysis

rtla timerlat

45

● rtla timerlat is an interface for timerlat tracer

● Two different modes:

○ timerlat top: shows an interactive view of the timer latencies

○ timerlat hist: shows a histogram of the timer latencies

The tool can be invoked

either using "rtla timerlat"

or "timerlat" only.

rtla: finding the sources of OS noise on Linux

Demo

demo

46

https://www.youtube.com/watch?v=3sGM076mLRQ
There are more rtla tools

to be developed, but the

current implementation is

already useful for many

users!

https://www.youtube.com/watch?v=3sGM076mLRQ
http://www.youtube.com/watch?v=3sGM076mLRQ

rtla: finding the sources of OS noise on Linux

rtla: real-time linux analysis

Some osnoise measurements

47

● Measurements made in a system with 24 CPUs

○ 12 cores/24 threads

● Two configurations, four experiments:

○ the system as is has no isolation setup (fresh install), while the isolated is

tuned for this purpose.

○ the osnoise threads run with regular priority (0 nice) or with real-time

priority (FIFO:1)

● The system runs for six hours on each setup

The tool can be invoked

either using "rtla timerlat"

or "timerlat" only.

rtla: finding the sources of OS noise on Linux

Some measurements

rtla

48

rtla: finding the sources of OS noise on Linux

rtla: real-time linux analysis

osnoise histograms: system as is

49

system as is system as is using FIFO

rtla: finding the sources of OS noise on Linux

rtla: real-time linux analysis

osnoise histograms: system tuned

50

system with isolated CPUs system with isolated CPUs using FIFO

rtla: finding the sources of OS noise on Linux

rtla: real-time linux analysis

osnoise histograms: system tuned

51

 system with isolated CPUs using FIFO

● With proper tune, Linux delivers:

○ Linux can deliver single digit osnoise occurrences -

FIFO:1 delivered < 5 us in this setup

○ Linux consistently delivered 99.99999% of CPU time

● But the results depends on the machine and can

change at every kernel release due to non-HPC/RT

aware algorithms.

rtla: finding the sources of OS noise on Linux

rtla: real-time linux analysis

Remarks

52

● The flexibility of Linux enables a set of new applications

○ Mixing RT and HPC configs

● The timerlat and osnoise tracers allow the measurement and tracing of

the desired metrics in an integrated way

● The RTLA transforms these tracers into a benchmark tool

● All tools discussed here are an integral part of the Linux kernel:

○ timerlat and osnoise in the 5.14

○ RTLA in 5.17

RTLA will continue

evolving to be the home

for multiple types of

analysis.

rtla: finding the sources of OS noise on Linux

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning

support, training, and consulting services make

Red Hat a trusted adviser to the Fortune 500.

Thank you

53

