\.‘ Red Hat
Enterprise Linux

RV: where are we?

Daniel Bristot de Oliveira
Senior Principal Software Engineer

The RV subsystem

RV Introduction

Runtime Verification

e Whatis RV?

e Where are we from? The initial patch set was
under submission when |

submitted this topic, but it

e RV and safety critical systems

e Where are we?

was merged on 6.0!

o Current RV structure in kernel

e Whatis next
So we will have a look at

the current structure and

talk about what is next!

Red Hat
The RV subsystem

RV Introduction

Runtime Verification

e Runtime Verification (RV) is a lightweight (yet rigorous) formal

method that with a more practical approach for complex systems. This topic was explored

during Daniel's PhD, where

e |Instead of relying on a fine-grained model of a system (e.g., a
he used it as the basis for

re-implementation a instruction level), RV works by analyzing the ,
the creation of an

' . . :
trace of the system's actual execution, comparing it against a seamation medl e e
formal specification of the system behavior. PREEMPT _RT, then used
to proof the scheduling
latency bound for the

kernel-rt

Red Hat
The RV subsystem

RV Introduction

Runtime Verification: IOW

e Asthe system runs, it generates events to be analyzed

e These events are analyzed against a well-defined description of the The current supported

system method is online

synchronous.

o Online Synchronous if it blocks the system
o Online Asynchronous if it does not block

o Offline if it verifies the system based on a trace file

e The analysis produces a verdict

e The system can react to an unexpected event

o Only makes sense for online RV

Red Hat
The RV subsystem

RV Introduction

Runtime Verification on Linux

Linux Realm

247309:
247309:
247309:
247309:
247310:
247310:
247310:

Runtime Verification

schedule <-worker_thread
preempt_count_add <-schedule
wg_worker_sleeping <-schedule
kthread_data <-wqg_worker_sleeping

preempt_count_sub <-schedule { System Trace

preempt_count_add <-schedule
rcu_note_context_switch <-__sched

k (Reactor \1 /
L)

WARN() Fix the doc /\ Goto fail-safe mode

The RV subsystem

Formal Realm

RV introduction

Why formal?

e Because itis precise and unambiguous
o Itis about reasoning, not about code
o Mathis math

o See this "The Man Who Revolutionized Computer Science With Math*":
https://www.youtube.com/watch?v=rkZzg7Vowao

e |tis possible to analyze formal properties of your reasoning

o Does the logic have contradictions?

o Is the reasoning deadlock free?

e |tiscloserto other formal types of demonstration

o Like the demonstration of the scheduling latency (my talk at LPC 2020).

e |t helpsto document the code

o And adds value to the documentation for safety critical systems

The RV subsystem * The man is Laslie Lamport, not me :-)

We currently support only

one formalism, but more
methods are are under

development.

Red Hat

Where are we
from?

Where are we from?

How it started

e How can | demonstrate the bound for the scheduling latency?

o Inaway that | could convince theoretical researchers

o But that could also be meaning full for Linux people

e |solved this problem using an automaton model explaining the PREEMPT_RT
synchronization.
o LPC 2018 talk Mind the gap - between real-time Linux and real-time theory
o Used the model specifications to derive a bound for the scheduling latency

o LPC 2020 talk: "A theorem for the RT scheduling latency (and a measuring tool too!)

Red Hat

The RV subsystem

Where are we from?

Automata for complex models

e Automatais a formal method with a large set of operations for
composition and validation

e Alarge automata can be built form a set of small automaton.
e The PREEMPT _RT thread model has:

o +9k states

o +21k transitions

o Build on a set of automata

m The vast majority of the automaton modules have 2/3 states

m Thelargest has 10 states

e (Scientific) journal paper on the subject ->

The RV subsystem

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

A thread synchronization model for the PREEMPT RT Linux kernel)

Daniel B. de Oliveira®™“*, Romulo S. de Oliveira®, Tommaso Cucinotta®

2 RHEL Platform/Real-time Team, Red Hat, Inc., Pisa, Italy

Check for
updates

b Department of Systems Automation, UFSC, Floriandpolis, Brazil

©RETIS Lab, Scuola Superiore Sant’Anna, Pisa, Italy

ARTICLE

INFO

ABSTRACT

Keywords:

Real-time computing
Operating systems
Linux kernel
Automata

Software verification
Synchronization

This article proposes an automata-based model for describing and validating sequences of kernel events in Linux
PREEMPT RT and how they influence the timeline of threads’ execution, comprising preemption control, inter-
rupt handling and control, scheduling and locking. This article also presents an extension of the Linux tracing
framework that enables the tracing of kernel events to verify the consistency of the kernel execution compared to
the event sequences that are legal according to the formal model. This enables cross-checking of a kernel behavior
against the formalized one, and in case of inconsistency, it pinpoints possible areas of improvement of the kernel,
useful for regression testing. Indeed, we describe in details three problems in the kernel revealed by using the
proposed technique, along with a short summary on how we reported and proposed fixes to the Linux kernel
community. As an example of the usage of the model, the analysis of the events involved in the activation of
the highest priority thread is presented, describing the delays occurred in this operation in the same granularity
used by kernel developers. This illustrates how it is possible to take advantage of the model for analyzing the
preemption model of Linux.

& RedHat

10

Where are we from?

Automata for RV

e Automatais a well define formalism

e Automatais a method to model Discrete Event Systems (DES)

O

(©)

The RV subsystem

Formally, an automaton is defined as:

m G={XEf x,X_ 1} where:

o
e X = finite set of states;

e E = finite set of events;

e f =transition function = (XxE) — X;
® X, = Initial state;

o X =set of final states.

The language - or traces - generated/recognized by G is the L(G).

There are multiple

different automata
definitions, in this case we
are talking about
Deterministic Automata
(DA)

Kernel doc explains it!

Red Hat

n

Where are we from?

Automata for RV

e The good thing about automata is that it also has an graphical

representation:

b
o

The RV subsystem

A state-machine is a sort

of automatal! It is one of
the basis of CS.

Red Hat

12

Where are we from?

Using automata to prove things

e It worked! By explaining the logical behavior, we derived a
timing bound!
e While developing and testing the model ended up finding

kernel bugs

o So people asked my, why not make it generic?

Demystifying the Real-Time Linux Scheduling
Latency

Daniel Bristot de Oliveira
Red Hat, Inc, Italy
bristot@redhat.com

Daniel Casini
Scuola Superiore Sant’Anna, Italy
daniel.casini@santannapisa.it

Ro6mulo Silva de Oliveira
Universidade Federal de Santa Catarina, Brazil
romulo.deoliveira@ufsc.br

Tommaso Cucinotta
Scuola Superiore Sant’Anna, Italy
tommaso.cucinotta@santannapisa.it

The RV subsystem

localin disabe e \
i Joca_ig_disable e switch

7 preenpt_disable_schea

Figure 21 Setting need resched always causes a context switch (R14).
[Thvead [] Scheduting Thresd) [Haraiva [l NMI (77 Preemption isabled & IRQ disabled
I I |
| RO |

Al Dpoid | Dpsd IF

» Lemma 7.
L < max(Dgy, Dpoip) + Dpaje + Dpsp. (6)

Proof. The lemma follows by noting that cases (i-a). (i-b). (i-c), (ii-a), (ii-b) are mutually-
exclusive and cover all the possible sequences of events from the occurrence of RHP; and
set_need_resched, to the time instant in which ;""" is allowed to execute (as required
by Definition 1), and the right-hand side of Equation 6 simultaneously upper bounds the

right-hand sides of Equations 2, 3, 4, and 5. «t

Theorem 8 summarizes the results derived in this section.

» Theorem 8. The scheduling latency experienced by an arbitrary thread 7,7
the least positive value that fulfills the following recursive equation:

is bounded by

L = maz(Dsy, Dpoip) + Dpaie + Dpsp + I™(L) + 1'"(L) (7)

Proof. The theorem follows directly from Lemmas 7 and Equation 1. -

& RedHat

Where are we from?

Efficient Formal Verification for the Linux
Kernel

Efficient automata verification

Daniel Bristot de Oliveiral-2-3[0000-0002—4577—7855]
Tommaso Cucinotta2[0000—0002-0362-0657] 4
Roémulo Silva de Oliveira?3[0000—0002—8853—9021]

e The PREEMPT_RT model was a super-high-frequency one
! RHEL Platform/Real-time Team, Red Hat, Inc., Pisa, Italy.
2 RETIS Lab, Scuola Superiore Sant’Anna, Pisa, Italy.

© MU|t|p|e events per microsecond 3 Department of Systems Automation, UFSC, Florianépolis, Brazil.

e Doingitin user-space was not efficient due to trace buffer overhead

Y SO we developed a Way to transform the automata |nto Code and run |t Abstract. Formal verification of the Linux kernel has been receiving

increasing attention in recent years, with the development of many mod-
. h k | els, from memory subsystems to the synchronization primitives of the
In the kerne real-time kernel. The effort in developing formal verification methods

o O(1) operating

Ko Binary

Compile .
and <~ vmlinux
load \»function()

o It was faster than just tracing Model

Code
generation

.dot
e Andwe ended up finding more bugs @"’ —>

m Becauseitis asimpler operation

>tracepoint

trace

The RV subsystem

Where are we from?

End efficient

e Running RV code in kernel is faster than tracing it!

Socket Activity Context Switching System V Message Passing
Bogo Ops/s, More Is Better Bogo Ops/s, More Is Better Bogo Ops/s, More Is Better
1500 2500000 + — = - - - - - - - - - === -~ 2000000 4 = = = = = = = = = = = - — — - -
1200 2000000 - NN -~~~ — ~ ~ ~ ~ ~ ~ - 1600000 -
900 1500000 +— AN - — — -~ -~ — — — — — — - 1200000 -
600 1000000 -+ NN - TEYENy — — — — — - 800000 -
300 500000 - & 619639 & 400000
as-is SWA trace as-is SWA trace as-is SWA trace

14

The RV subsystem

RV meets safety-critical systems

RV meets
safety-critical
systems

RV in safety-critical systems

RV and safety-critical system

e RV uses formal-method

O

Which is at the top of the list of approaches to use for certification

e Three birds with a single stone!

(@)

O

(©)

e It only uses well-established technologies in the safety-critical fields:

(©)

@)

(@)

The RV subsystem

Documents the system using automata
It verifies the system at the development/testing phases
It monitors the system at runtime

m Reacting to unexpected events

Pure and straightforward C code
Statically allocated memory

No loops and so on

Talk at ELCE 2019:
Formal Verification Made Easy
(and fast!)

https://www.youtube.com/watch?v=BfTuEHafNgg

'l

Red Hat

RV in safety-critical systems

RV and safety-critical system

e |started working with people in the Elisa Project

e Gabriele Paoloni and | are working on the approach presented at LPC

2021

Blocks

Specifications

Requirements Safety Analyses]

SW Architectural

Design
Tests to exercise the
system
[CI/CD to monitor changes T { runtime monitor]

17

The RV subsystem

Red Hat

RV in safety-critical systems . .
Y y A Maintainable, Scalable, and

Verifiable SW Qualification

Approach for Automotive in

RV and safety-critical system U

https://www.youtube.com/watch?v=6_gvarChkAg
e RV canbe usedto document the kernel

e Butalso to document how the system should behave:
o How the kernel is suppose to behave

o How the user is supposed to behave

e |t can be used to split subsystems into small parts
o Each small part can be qualified as a black box (ISO 26262 part 12)
o RV monitors the interface (ISO 26262 part 6)

e Further information:

o Seetalk->

o Together with Gabriele Paoloni

Red Hat

The RV subsystem

RV Where are we?

Where are we?

The RV subsystem

Red Hat

20

Where are we?

Merged!

The RV subsystem

Red Hat

RV Interface

Interface and concepts

e RV subsystemis aninterface and a set of tools

to make RV accessible

Formal Realm

Linux Realm

Runtime Verification
e ARV monitor composed of: S

247309: pre
247309: wq_
247309:
247318: pre

o A model/specification sirsre: o

247318: rcu

System Trace

o Theinstrumentation

e Avreactoris an action available to the monitor

RV
Reactor

o Can be invoked by the monitor if an unexpected

even happens WARN() Fix the doc

e Monitors can be enabled at runtime

Goto fail-safe mode

o Each monitor can have one enabled reactor

21

The RV subsystem

RV Interface

Interface demo

Demo video

https://youtu.be/V42BFNKbhOg

[=]

-

3

Red Hat

The RV subsystem

http://www.youtube.com/watch?v=V42BFNKbh0g

Monitor synthesis

Monitor synthesis

e The RV enables conversion of an automata.dot -> kernel RV monitor
o Thisis done with a dot2k utility
e dot2k creates a skeleton of a RV monitor module
e The monitor also uses a set of C macros to generate the monitor
code for the specific type of monitor

e The only thing left for the humans to do is the instrumentation

m [he connection between a kernel event and the model event

23

The RV subsystem

Using code generation
automatizes the process,

making it less prone to

error and easier to qualify.

Red Hat

Monitor synthesis

Monitor synthesis demo

Demo video

https://youtu.be/3yDxz1SI4k8

Red Hat

The RV subsystem

http://www.youtube.com/watch?v=3yDxz1Sl4k8

RV Structure

26

RV Structure

RV Interface

® kernel/tracing/rv/
o rv.c:rvinterface
m Startup
m Register & control monitors
O rv_reactor.c:
m Startup
m Register & control reactors

o Reactors

The RV subsystem

Red Hat

27

RV Structure

® kernel/tracing/rv/monitors

O

@)

(@)

(@)

The RV subsystem

Each monitor has its own directory

They are independent from the interface

For deterministic automata monitors, there are two files:

Other types of monitors might have different files

RV Monitors

The interface only controls the monitoring session

.h - the automata

.C - instrumentation and control

But it is important to keep the specification separated from the code

monitors/

Red Hat

28

RV Structure

RV Headers

e include/linux

O

rv.h: monitor interface

® include/rv

O

O

The RV subsystem

Instrumentation.h: helper functions for instrumentation
automata.h: helpers for automata operation
da_monitor.h: helpers for deterministic automata monitor

Other types of monitor (timed automata) will add files here

total 28

bristot@x

L include/rv

instrumentation.h

8 include/linux/rv.

n

Red Hat

29

RV Structure

RV Tools

e tools/verification:
o dot2/:
m dot2 tools: tools to create the skeleton of the monitor
m dot2k_templates/: templates for the monitor
o models/
m A place to store models/specification

m Sample monitors that can be used as starting point

The RV subsystem

ip.dot

wwnr.dot

Red Hat

http://www.youtube.com/watch?v=Qht2yU-OF8U

RV Structure

RV Documentation

e Documentation/trace/rv/:
o runtime-verification.rst
o da_monitor_instrumentation.rst
o da_monitor_synthesis.rst
o deterministic_automata.rst
o For each monitor:
m monitor_wip.rst

m monitor_wwnr.rst

30

The RV subsystem

c kernel.org

© Runtime Verification
Runtime Monitors and Reactors
Online RV monitors
The user interface
Deterministic Automata

Deterministic Automata Monitor
Synthesis

Deterministic Automata
Instrumentation

Monitor wip
Monitor wwnr
Kernel Maintainer Handbook
fault-injection
Kernel Livepatching

The Linux driver implementer’s AP|
guide

Core API Documentation
locking

Accounting

Block

cdrom

Linux CPUFreq - U frequency and
voltage scaling code in the Linux(TM)
kernel

Frame Buffer

fpga

Human Interface Devices (HID)
12C/SMBus Subsystem
Industrial I/0

ISDN

InfiniBand

LEDs

NetlLabel

Networking

pcmcia

Power Management
TCM Virtual Device

timers

Serial Peripheral Interface (SPI)

1-Wire Subsystem

Linux Watchdog Support

Linux Virtualization Support

The Linux Input Documentation
Linux Hardware Monitoring

Linux GPU Driver Developer's Guide
Security

Linux Sound Subsystem
Documentation

Linux Kernel Crypto API
Filesystems in the Linux kernel

Linux Memory Management
Documentation

BPF Documentation
USB support
Linux PCI Bus Subsystem

Linux SCSI Subsystem

Assorted Miscellaneous Devices

» Linux Tracing Technologies » Runtime Verification » Runtime Verification View page source

Runtime Verification

Runtime Verification (RV) is a lightweight (yet rigorous) method that complements classical exhaustive verification techniques (such as model checking and theorem proving)

with a more practical approach for complex systems.

Instead of relying on a fine-grained model of a system (e.g., a re-implementation a instruction level), RV works by analyzing the trace of the system’s actual execution,

comparing it against a formal specification of the system behavior.
The main advantage is that RV can give precise information on the runtime behavior of the monitored system, without the pitfalls of developing models that require a re-

implementation of the entire system in a modeling language. Moreover, given an efficient monitoring method, it is possible execute an online verification of a system,

enabling the reaction for unexpected events, avoiding, for example, the propagation of a failure on safety-critical systems.

Runtime Monitors and Reactors

A monitor is the central part of the runtime verification of a system. The monitor stands in between the formal specification of the desired (or undesired) behavior, and the

trace of the actual system.

In Linux terms, the runtime verification monitors are encapsulated inside the RV monitor abstraction. A RV monitor includes a reference model of the system, a set of
instances of the monitor (per-cpu monitor, per-task monitor, and so on), and the helper functions that glue the monitor to the system via trace, as depicted bellow:

Linux +- RV MONLtOFr =--=cccccccmccccocamaccocsccacanan + Formal
Realm | | Realm
e + T + e +
| Linux kernel | | Monitor | | Reference |
| Tracing | ->| Instance(s) | <- | Model |
| (instrumentation) | | (verification) | | (specification)
e e e e e +* +* +

|

| v

| B +

| | Reaction |

| oottt

| e

| +-> trace output ?
+ -

-> panic ?
-> <user-specified>

In addition to the verification and monitoring of the system, a monitor can react to an unexpected event. The forms of reaction can vary from logging the event occurrence to
the enforcement of the correct behavior to the extreme action of taking a system down to avoid the propagation of a failure.

In Linux terms, a reactor is an reaction method available for RV monitors. By default, all monitors should provide a trace output of their actions, which is already a reaction.

In addition, other reactions will be available so the user can enable them as needed.
For further information about the principles of runtime verification and RV applied to Linux:

Bartocci, Ezio, et al. Introduction to runtime verification. In: Lectures on Runtime Verification. Springer, Cham, 2018. p. 1-33.

Falcone, Ylies, et al. A taxonomy for classifying runtime verification tools. In: International Conference on Runtime Verification. Springer, Cham, 2018. p. 241-262.

De Oliveira, Daniel Bristot. Automata-based formal analysis and verification of the real-time Linux kernel. Ph.D. Thesis, 2020.
Online RV monitors
Monitors can be classified as offline and online monitors. Offline monitor process the traces generated by a system after the events, generally by reading the trace execution
from a permanent storage system. Online monitors process the trace during the execution of the system. Online monitors are said to be synchronous if the processing of an
event is attached to the system execution, blocking the system during the event monitoring. On the other hand, an asynchronous monitor has its execution detached from the
system. Each type of monitor has a set of advantages. For example, offline monitors can be executed on different machines but require operations to save the log to a file. In
contrast, synchronous online method can react at the exact moment a violation occurs.
Another important aspect regarding monitors is the overhead associated with the event analysis. If the system generates events at a frequency higher than the monitor’s ability
to process them in the same system, only the offline methods are viable. On the other hand, if the tracing of the events incurs on higher overhead than the simple handling of

an event by a monitor, then a synchronous online monitors will incur on lower overhead.

Indeed, the research presented in:

RV what is next?

RV: what is next?

32

Watchdog monitor

Watchdog monitor

It was part of the first patchset (working with Elisa people)

The idea is to monitor the watchdog usage until reaching a safe state

o Open -> start -> set a timeout -> ping at least once

o Avoid some features to reduce the amount of code to be inspected

without changing the code
m Like the hrtimers usage on watchdog dev
The monitor automaton is generic
In the patchset | added some options requested by the safety analysis
made in the Elisa group
o But because | did it all in a single patch, the explanation was not clear
The patchset also included a user-space tool to exercise the monitor

and to serve as starting point for the monitor

The RV subsystem

| set_safe_timeowt
\

stop

~
o

l | closad_running
\

Ii' .%"T‘f'/,

| safe) |ping

/o o
u. (:pcfy close \
~ - ll
‘)

\

\

—’-l mn J(hcr lhre:lds
2N /’ -

. G
\
-~ DI](‘H /'05“ \ nowayout
\
/ \\
} _\
| nwo ' " nowayo put

I

N

A\
\

/ other_threads

)p(-n \ c‘usc

/ \

opened_nwo

™
|) other_threads started_nwo

Iv’ set_sate llm(aut

-

| set_nwo |
J

Ny o

\
\ |

\ nowayout ping | close
\
\

N ||

™ [|
Lorme [

\ /

L lose
closed_running_nwo

\ /

| sate_nwo

|\

\/
/I\

P

open

nowayout
(1lh>:'r4(hmalt

clos

Monitor options

Monitor options

e We can enrich monitors with additional options/parameters

e Forexample:

o intvalue to be the max safe watchdog timeout
e Each monitor has its folder also to store these specific options
e |amnotsureif | will:
o Add a file per option
m FEasytouse
m More memory
o Asingle option file
m It will need a syntax like the event's format file

m Less memory

33

The RV subsystem

Red Hat

Monitor via module

Modular monitors

e Now models are built-in only

e But they can be loaded as module - | started them as module

e |removed the export symbols in the initial patch set to avoid problems
e |just need to export symbolsininclude/linux/rv.h

e |t has adrawback:

o Each monitor will have its own DECLARE_TRACE

o Thatis why each monitor has a src dir: to store these monitor specific

things

34

The RV subsystem

#ifdef CONFIG_RV_REACTORS
struct rv_reactor {

const char xname;

const char X ription;

void (xreact) (char *msg);

v_monitor {

const char :

const char xdescription;
bool enabled;

int ('
void

void

CONFIG_RV_REACTORS

void

J)

bool rv_monitoring_on(void);
int rv_unre er_monitor(struct rv_monitor *monitor);
gister_monitor(struct rv_monitor *monitor);

sk_monitor_slot(void);

V_REACTORS
on i

int rv_ q ctor(struct rv
int rv_reg (struct rv_reactor x*xreactor);
tendif "TORS

Red Hat

dot2bpf

Monitors with ebpf

e |tisalso possible to have monitors in eBPF
e | have a dot2bpf implementation

e C&libbpf

e Process the automata in the kernel

e Feedback to user-space
e But it works and will share most of the kernel headers
e To deduplicate the code of the eBPF and in-kernel option
e Thereisalso a new set of monitors that | am doing with ETH Zurich

that will use eBPF for user-space processing

Red Hat

The RV subsystem

36

Monitor qualification

Qualifying the monitors code

e We need to qualify the monitors' code according to the safety
regulations
e Thisis part of the work we do with Elisa
e Red hatis committed to that as well
e The monitor was designed with this in mind
o PureC
o No memory allocation

o Self-generated

e But it will certainly require some changes that might add overhead

o So we might have a da_safe_monitor.h

The RV subsystem

Red Hat

Other monitors and formalism

Other monitors

e Integrating the preemption model

o It will require some extra work in the instrumentation, adjusting existing

tracepoints
o It will happen along with rtsl integration on rtla

m So we will have the logical and the timing verification of the proven

scheduling latency.

e Other monitors for RT

o Function calls that are not guaranteed to be real-time

o [Potential] priority inversion scenarios

e | am working with ETH Zurich and the University of Copenhagen on

other types of formalism

o They are more complex than automata, and allow timing in the equations

37

The RV subsystem

Red Hat

38

RV Where are we?

Questions?

The RV subsystem

Red Hat

