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The initial patch set was 

under submission when I 

submitted this topic, but it 

was merged on 6.0!

So we will have a look at 

the current structure and 

talk about what is next!

● What is RV?

● Where are we from?

● RV and safety critical systems

● Where are we?

○ Current RV structure in kernel

● What is next
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This topic was explored 

during Daniel's PhD, where 

he used it as the basis for 

the creation of an 

preemption model for the 

PREEMPT_RT, then used 

to proof the scheduling 

latency bound for the 

kernel-rt

● Runtime Verification (RV) is a lightweight (yet rigorous) formal 

method that with a more practical approach for complex systems.

● Instead of relying on a fine-grained model of a system (e.g., a 

re-implementation a instruction level), RV works by analyzing the 

trace of the system's actual execution, comparing it against a 

formal specification of the system behavior.
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The current supported 

method is online 

synchronous.

● As the system runs, it generates events to be analyzed

● These events are analyzed against a well-defined description of the 

system

○ Online Synchronous if it blocks the system

○ Online Asynchronous if it does not block

○ Offline if it verifies the system based on a trace file

● The analysis produces a verdict

● The system can react to an unexpected event

○ Only makes sense for online RV
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RV automata

Runtime Verification on Linux

Runtime Verification

Monitor SpecificationSystem Trace

Reactor

✅

❌

247309: schedule <-worker_thread
247309: preempt_count_add <-schedule
247309: wq_worker_sleeping <-schedule
247309: kthread_data <-wq_worker_sleeping
247310: preempt_count_sub <-schedule
247310: preempt_count_add <-schedule
247310: rcu_note_context_switch <-__sched

Goto fail-safe modeWARN() Fix the doc

Linux Realm Formal Realm

Work-in-Progress - License: CC-BY-4.0

RV Introduction
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We currently support only 

one formalism, but more 

methods are are under 

development.

● Because it is precise and unambiguous 

○ It is about reasoning, not about code

○ Math is math

○ See this "The Man Who Revolutionized Computer Science With Math*": 

https://www.youtube.com/watch?v=rkZzg7Vowao

● It is possible to analyze formal properties of your reasoning

○ Does the logic have contradictions?

○ Is the reasoning deadlock free?

● It is closer to other formal types of demonstration

○ Like the demonstration of the scheduling latency (my talk at LPC 2020).

● It helps to document the code

○ And adds value to the documentation for safety critical systems

* The man is Laslie Lamport, not me :-)
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● How can I demonstrate the bound for the scheduling latency?

○ In a way that I could convince theoretical researchers

○ But that could also be meaning full for Linux people

● I solved this problem using an automaton model explaining the PREEMPT_RT 

synchronization.

○ LPC 2018 talk Mind the gap - between real-time Linux and real-time theory

○ Used the model specifications to derive a bound for the scheduling latency

○ LPC 2020 talk: "A theorem for the RT scheduling latency (and a measuring tool too!) 
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Where are we from?

Automata for complex models
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● Automata is a formal method with a large set of operations for 

composition and validation

● A large automata can be built form a set of small automaton.

● The PREEMPT_RT thread model has:

○ +9k states

○ +21k transitions

○ Build on a set of automata

■ The vast majority of the automaton modules have 2/3 states

■ The largest has 10 states

● (Scientific) journal paper on the subject ->
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Where are we from?

Automata for RV
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There are multiple 

different automata 

definitions, in this case we 

are talking about 

Deterministic Automata 

(DA)

Kernel doc explains it!

● Automata is a well define formalism

● Automata is a method to model Discrete Event Systems (DES)

○ Formally, an automaton is defined as:

■ G = { X, E, f, x0, Xm }, where:

● X = finite set of states;

● E = finite set of events;

● f   = transition function = (X x E) → X;

● x0 = Initial state;

● Xm = set of final states.

○ The language - or traces - generated/recognized by G is the L(G).
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A state-machine is a sort 

of automata! It is one of 

the basis of CS.

● The good thing about automata is that it also has an graphical 

representation:
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Where are we from?

Using automata to prove things
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● It worked! By explaining the logical behavior, we derived a 

timing bound!

● While developing and testing the model ended up finding 

kernel bugs

○ So people asked my, why not make it generic?
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Where are we from?

Efficient automata verification
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● The PREEMPT_RT model was a super-high-frequency one

○ Multiple events per microsecond

● Doing it in user-space was not efficient due to trace buffer overhead

● So we developed a way to transform the automata into code and run it 

in the kernel

○ O(1) operating

○ It was faster than just tracing

■ Because it is a simpler operation

● And we ended up finding more bugs
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End efficient
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● Running RV code in kernel is faster than tracing it!
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RV meets safety-critical systems
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RV and safety-critical system
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● RV uses formal-method

○ Which is at the top of the list of approaches to use for certification

● Three birds with a single stone!

○ Documents the system using automata

○ It verifies the system at the development/testing phases

○ It monitors the system at runtime

■ Reacting to unexpected events

● It only uses well-established technologies in the safety-critical fields:

○ Pure and straightforward C code

○ Statically allocated memory

○ No loops and so on

Talk at ELCE 2019:
Formal Verification Made Easy

(and fast!)

https://www.youtube.com/watch?v=BfTuEHafNgg
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RV in safety-critical systems

RV and safety-critical system
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● I started working with people in the Elisa Project

● Gabriele Paoloni and I are working on the approach presented at LPC 

2021

Requirements
SW Architectural 

Design

Runtime Verification Monitor

runtime monitor

Blocks 
Specifications

CI/CD to monitor changes

Tests to exercise the 
system

Safety Analyses
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RV in safety-critical systems

RV and safety-critical system
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● RV can be used to document the kernel

● But also to document how the system should behave:

○ How the kernel is suppose to behave

○ How the user is supposed to behave

● It can be used to split subsystems into small parts

○ Each small part can be qualified as a black box (ISO 26262 part 12)

○ RV monitors the interface (ISO 26262 part 6)

● Further information:

○ See talk ->

○ Together with Gabriele Paoloni

https://www.youtube.com/watch?v=6_gvarChkAg

A Maintainable, Scalable, and 

Verifiable SW Qualification 

Approach for Automotive in 

Linux
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Interface and concepts

21

● RV subsystem is an interface and a set of tools 

to make RV accessible

● A RV monitor composed of:

○ A model/specification

○ The instrumentation

● A reactor is an action available to the monitor

○ Can be invoked by the monitor if an unexpected 

even happens 

● Monitors can be enabled at runtime

○ Each monitor can have one enabled reactor 



The RV subsystem

RV Interface

Interface demo
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Demo video

https://youtu.be/V42BFNKbh0g

http://www.youtube.com/watch?v=V42BFNKbh0g
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Using code generation 

automatizes the process, 

making it less prone to 

error and easier to qualify.

● The RV enables conversion of an automata.dot -> kernel RV monitor

○ This is done with a dot2k utility

● dot2k creates a skeleton of a RV monitor module

● The monitor also uses a set of C  macros to generate the monitor 

code for the specific type of monitor

● The only thing left for the humans to do is the instrumentation

■ The connection between a kernel event and the model event
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Monitor synthesis

Monitor synthesis demo
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Demo video

https://youtu.be/3yDxz1Sl4k8

http://www.youtube.com/watch?v=3yDxz1Sl4k8
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● kernel/tracing/rv/

○ rv.c: rv interface

■ Startup

■ Register & control monitors

○ rv_reactor.c:

■ Startup

■ Register & control reactors

○ Reactors
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● kernel/tracing/rv/monitors

○ Each monitor has its own directory

○ They are independent from the interface

■ The interface only controls the monitoring session

○ For deterministic automata monitors, there are two files:

■ .h - the automata

■ .c - instrumentation and control

○ Other types of monitors might have different files

■ But it is important to keep the specification separated from the code
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● include/linux

○ rv.h: monitor interface

● include/rv

○ Instrumentation.h: helper functions for instrumentation

○ automata.h: helpers for automata operation

○ da_monitor.h: helpers for deterministic automata monitor

○ Other types of monitor (timed automata) will add files here
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RV Tools
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● tools/verification:

○ dot2/:

■ dot2 tools: tools to create the skeleton of the monitor

■ dot2k_templates/: templates for the monitor

○ models/

■ A place to store models/specification

■ Sample monitors that can be used as starting point

http://www.youtube.com/watch?v=Qht2yU-OF8U
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● Documentation/trace/rv/:

○ runtime-verification.rst

○ da_monitor_instrumentation.rst 

○ da_monitor_synthesis.rst 

○ deterministic_automata.rst

○ For each monitor:

■ monitor_wip.rst

■  monitor_wwnr.rst  
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● It was part of the first patchset (working with Elisa people)

● The idea is to monitor the watchdog usage until reaching a safe state

○ Open -> start -> set a timeout -> ping at least once

○ Avoid some features to reduce the amount of code to be inspected 

without changing the code

■ Like the hrtimers usage on watchdog dev

● The monitor automaton is generic

● In the patchset I added some options requested by the safety analysis 

made in the Elisa group

○ But because I did it all in a single patch, the explanation was not clear

● The patchset also included a user-space tool to exercise the monitor 

and to serve as starting point for the monitor
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● We can enrich monitors with additional options/parameters

● For example:

○ int value to be the max safe watchdog timeout

● Each monitor has its folder also to store these specific options

● I am not sure if I will:

○ Add a file per option

■ Easy to use

■ More memory

○ A single option file 

■ It will need a syntax like the event's format file

■ Less memory
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Monitor via module

Modular monitors
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Some other info here
● Now models are built-in only

● But they can be loaded as module - I started them as module

● I removed the export symbols in the initial patch set to avoid problems

● I just need to export symbols in include/linux/rv.h

● It has a drawback:

○ Each monitor will have its own DECLARE_TRACE

○ That is why each monitor has a src dir: to store these monitor specific 

things
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dot2bpf

Monitors with ebpf
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● It is also possible to have monitors in eBPF

● I have a dot2bpf implementation

● C & libbpf

● Process the automata in the kernel

● Feedback to user-space

● But it works and will share most of the kernel headers

● To deduplicate the code of the eBPF and in-kernel option

● There is also a new set of monitors that I am doing with ETH Zurich 

that will use eBPF for user-space processing
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Qualifying the monitors code
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● We need to qualify the monitors' code according to the safety 

regulations

● This is part of the work we do with Elisa

● Red hat is committed to that as well

● The monitor was designed with this in mind

○ Pure C

○ No memory allocation

○ Self-generated

● But it will certainly require some changes that might add overhead

○ So we might have a da_safe_monitor.h 
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● Integrating the preemption model

○ It will require some extra work in the instrumentation, adjusting existing 

tracepoints

○ It will happen along with rtsl integration on rtla

■ So we will have the logical and the timing verification of the proven 

scheduling latency.

● Other monitors for RT

○ Function calls that are not guaranteed to be real-time

○ [Potential] priority inversion scenarios

● I am working with ETH Zurich and  the University of Copenhagen on 

other types of formalism 

○ They are more complex than automata, and allow timing in the equations
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