
The RV subsystem

Daniel Bristot de Oliveira
Senior Principal Software Engineer

RV: where are we?

1

The RV subsystem

RV Introduction

Runtime Verification

2

The initial patch set was

under submission when I

submitted this topic, but it

was merged on 6.0!

So we will have a look at

the current structure and

talk about what is next!

● What is RV?

● Where are we from?

● RV and safety critical systems

● Where are we?

○ Current RV structure in kernel

● What is next

The RV subsystem

RV Introduction

Runtime Verification

3

This topic was explored

during Daniel's PhD, where

he used it as the basis for

the creation of an

preemption model for the

PREEMPT_RT, then used

to proof the scheduling

latency bound for the

kernel-rt

● Runtime Verification (RV) is a lightweight (yet rigorous) formal

method that with a more practical approach for complex systems.

● Instead of relying on a fine-grained model of a system (e.g., a

re-implementation a instruction level), RV works by analyzing the

trace of the system's actual execution, comparing it against a

formal specification of the system behavior.

The RV subsystem

RV Introduction

Runtime Verification: IOW

4

The current supported

method is online

synchronous.

● As the system runs, it generates events to be analyzed

● These events are analyzed against a well-defined description of the

system

○ Online Synchronous if it blocks the system

○ Online Asynchronous if it does not block

○ Offline if it verifies the system based on a trace file

● The analysis produces a verdict

● The system can react to an unexpected event

○ Only makes sense for online RV

The RV subsystem

RV automata

Runtime Verification on Linux

Runtime Verification

Monitor SpecificationSystem Trace

Reactor

✅

❌

247309: schedule <-worker_thread
247309: preempt_count_add <-schedule
247309: wq_worker_sleeping <-schedule
247309: kthread_data <-wq_worker_sleeping
247310: preempt_count_sub <-schedule
247310: preempt_count_add <-schedule
247310: rcu_note_context_switch <-__sched

Goto fail-safe modeWARN() Fix the doc

Linux Realm Formal Realm

Work-in-Progress - License: CC-BY-4.0

RV Introduction

5

The RV subsystem

RV introduction

Why formal?

6

We currently support only

one formalism, but more

methods are are under

development.

● Because it is precise and unambiguous

○ It is about reasoning, not about code

○ Math is math

○ See this "The Man Who Revolutionized Computer Science With Math*":

https://www.youtube.com/watch?v=rkZzg7Vowao

● It is possible to analyze formal properties of your reasoning

○ Does the logic have contradictions?

○ Is the reasoning deadlock free?

● It is closer to other formal types of demonstration

○ Like the demonstration of the scheduling latency (my talk at LPC 2020).

● It helps to document the code

○ And adds value to the documentation for safety critical systems

* The man is Laslie Lamport, not me :-)

The RV subsystem

Where are we
from?

Where are we from?

7

The RV subsystem

Where are we from?

How it started

8

● How can I demonstrate the bound for the scheduling latency?

○ In a way that I could convince theoretical researchers

○ But that could also be meaning full for Linux people

● I solved this problem using an automaton model explaining the PREEMPT_RT

synchronization.

○ LPC 2018 talk Mind the gap - between real-time Linux and real-time theory

○ Used the model specifications to derive a bound for the scheduling latency

○ LPC 2020 talk: "A theorem for the RT scheduling latency (and a measuring tool too!)

The RV subsystem

Where are we from?

Automata for complex models

9

● Automata is a formal method with a large set of operations for

composition and validation

● A large automata can be built form a set of small automaton.

● The PREEMPT_RT thread model has:

○ +9k states

○ +21k transitions

○ Build on a set of automata

■ The vast majority of the automaton modules have 2/3 states

■ The largest has 10 states

● (Scientific) journal paper on the subject ->

The RV subsystem

Where are we from?

Automata for RV

10

There are multiple

different automata

definitions, in this case we

are talking about

Deterministic Automata

(DA)

Kernel doc explains it!

● Automata is a well define formalism

● Automata is a method to model Discrete Event Systems (DES)

○ Formally, an automaton is defined as:

■ G = { X, E, f, x0, Xm }, where:

● X = finite set of states;

● E = finite set of events;

● f = transition function = (X x E) → X;

● x0 = Initial state;

● Xm = set of final states.

○ The language - or traces - generated/recognized by G is the L(G).

The RV subsystem

Where are we from?

Automata for RV

11

A state-machine is a sort

of automata! It is one of

the basis of CS.

● The good thing about automata is that it also has an graphical

representation:

The RV subsystem

Where are we from?

Using automata to prove things

12

● It worked! By explaining the logical behavior, we derived a

timing bound!

● While developing and testing the model ended up finding

kernel bugs

○ So people asked my, why not make it generic?

The RV subsystem

Where are we from?

Efficient automata verification

13

● The PREEMPT_RT model was a super-high-frequency one

○ Multiple events per microsecond

● Doing it in user-space was not efficient due to trace buffer overhead

● So we developed a way to transform the automata into code and run it

in the kernel

○ O(1) operating

○ It was faster than just tracing

■ Because it is a simpler operation

● And we ended up finding more bugs

The RV subsystem

Where are we from?

End efficient

14

● Running RV code in kernel is faster than tracing it!

The RV subsystem

RV meets
safety-critical
systems

RV meets safety-critical systems

15

The RV subsystem

RV in safety-critical systems

RV and safety-critical system

16

● RV uses formal-method

○ Which is at the top of the list of approaches to use for certification

● Three birds with a single stone!

○ Documents the system using automata

○ It verifies the system at the development/testing phases

○ It monitors the system at runtime

■ Reacting to unexpected events

● It only uses well-established technologies in the safety-critical fields:

○ Pure and straightforward C code

○ Statically allocated memory

○ No loops and so on

Talk at ELCE 2019:
Formal Verification Made Easy

(and fast!)

https://www.youtube.com/watch?v=BfTuEHafNgg

The RV subsystem

RV in safety-critical systems

RV and safety-critical system

17

● I started working with people in the Elisa Project

● Gabriele Paoloni and I are working on the approach presented at LPC

2021

Requirements
SW Architectural

Design

Runtime Verification Monitor

runtime monitor

Blocks
Specifications

CI/CD to monitor changes

Tests to exercise the
system

Safety Analyses

The RV subsystem

RV in safety-critical systems

RV and safety-critical system

18

● RV can be used to document the kernel

● But also to document how the system should behave:

○ How the kernel is suppose to behave

○ How the user is supposed to behave

● It can be used to split subsystems into small parts

○ Each small part can be qualified as a black box (ISO 26262 part 12)

○ RV monitors the interface (ISO 26262 part 6)

● Further information:

○ See talk ->

○ Together with Gabriele Paoloni

https://www.youtube.com/watch?v=6_gvarChkAg

A Maintainable, Scalable, and

Verifiable SW Qualification

Approach for Automotive in

Linux

The RV subsystem

Where are we?

RV Where are we?

19

The RV subsystem

Merged!

Where are we?

20

The RV subsystem

RV Interface

Interface and concepts

21

● RV subsystem is an interface and a set of tools

to make RV accessible

● A RV monitor composed of:

○ A model/specification

○ The instrumentation

● A reactor is an action available to the monitor

○ Can be invoked by the monitor if an unexpected

even happens

● Monitors can be enabled at runtime

○ Each monitor can have one enabled reactor

The RV subsystem

RV Interface

Interface demo

22

Demo video

https://youtu.be/V42BFNKbh0g

http://www.youtube.com/watch?v=V42BFNKbh0g

The RV subsystem

Monitor synthesis

Monitor synthesis

23

Using code generation

automatizes the process,

making it less prone to

error and easier to qualify.

● The RV enables conversion of an automata.dot -> kernel RV monitor

○ This is done with a dot2k utility

● dot2k creates a skeleton of a RV monitor module

● The monitor also uses a set of C macros to generate the monitor

code for the specific type of monitor

● The only thing left for the humans to do is the instrumentation

■ The connection between a kernel event and the model event

The RV subsystem

Monitor synthesis

Monitor synthesis demo

24

Demo video

https://youtu.be/3yDxz1Sl4k8

http://www.youtube.com/watch?v=3yDxz1Sl4k8

The RV subsystem

RV Structure

RV Structure

25

The RV subsystem

RV Structure

RV Interface

26

● kernel/tracing/rv/

○ rv.c: rv interface

■ Startup

■ Register & control monitors

○ rv_reactor.c:

■ Startup

■ Register & control reactors

○ Reactors

The RV subsystem

RV Structure

RV Monitors

27

● kernel/tracing/rv/monitors

○ Each monitor has its own directory

○ They are independent from the interface

■ The interface only controls the monitoring session

○ For deterministic automata monitors, there are two files:

■ .h - the automata

■ .c - instrumentation and control

○ Other types of monitors might have different files

■ But it is important to keep the specification separated from the code

The RV subsystem

RV Structure

RV Headers

28

● include/linux

○ rv.h: monitor interface

● include/rv

○ Instrumentation.h: helper functions for instrumentation

○ automata.h: helpers for automata operation

○ da_monitor.h: helpers for deterministic automata monitor

○ Other types of monitor (timed automata) will add files here

The RV subsystem

RV Structure

RV Tools

29

● tools/verification:

○ dot2/:

■ dot2 tools: tools to create the skeleton of the monitor

■ dot2k_templates/: templates for the monitor

○ models/

■ A place to store models/specification

■ Sample monitors that can be used as starting point

http://www.youtube.com/watch?v=Qht2yU-OF8U

The RV subsystem

RV Structure

RV Documentation

30

● Documentation/trace/rv/:

○ runtime-verification.rst

○ da_monitor_instrumentation.rst

○ da_monitor_synthesis.rst

○ deterministic_automata.rst

○ For each monitor:

■ monitor_wip.rst

■ monitor_wwnr.rst

The RV subsystem

RV: what is next?

RV what is next?

31

The RV subsystem

Watchdog monitor

Watchdog monitor

32

● It was part of the first patchset (working with Elisa people)

● The idea is to monitor the watchdog usage until reaching a safe state

○ Open -> start -> set a timeout -> ping at least once

○ Avoid some features to reduce the amount of code to be inspected

without changing the code

■ Like the hrtimers usage on watchdog dev

● The monitor automaton is generic

● In the patchset I added some options requested by the safety analysis

made in the Elisa group

○ But because I did it all in a single patch, the explanation was not clear

● The patchset also included a user-space tool to exercise the monitor

and to serve as starting point for the monitor

The RV subsystem

Monitor options

Monitor options

33

● We can enrich monitors with additional options/parameters

● For example:

○ int value to be the max safe watchdog timeout

● Each monitor has its folder also to store these specific options

● I am not sure if I will:

○ Add a file per option

■ Easy to use

■ More memory

○ A single option file

■ It will need a syntax like the event's format file

■ Less memory

The RV subsystem

Monitor via module

Modular monitors

34

Some other info here
● Now models are built-in only

● But they can be loaded as module - I started them as module

● I removed the export symbols in the initial patch set to avoid problems

● I just need to export symbols in include/linux/rv.h

● It has a drawback:

○ Each monitor will have its own DECLARE_TRACE

○ That is why each monitor has a src dir: to store these monitor specific

things

The RV subsystem

dot2bpf

Monitors with ebpf

35

● It is also possible to have monitors in eBPF

● I have a dot2bpf implementation

● C & libbpf

● Process the automata in the kernel

● Feedback to user-space

● But it works and will share most of the kernel headers

● To deduplicate the code of the eBPF and in-kernel option

● There is also a new set of monitors that I am doing with ETH Zurich

that will use eBPF for user-space processing

The RV subsystem

Monitor qualification

Qualifying the monitors code

36

● We need to qualify the monitors' code according to the safety

regulations

● This is part of the work we do with Elisa

● Red hat is committed to that as well

● The monitor was designed with this in mind

○ Pure C

○ No memory allocation

○ Self-generated

● But it will certainly require some changes that might add overhead

○ So we might have a da_safe_monitor.h

The RV subsystem

Other monitors and formalism

Other monitors

37

● Integrating the preemption model

○ It will require some extra work in the instrumentation, adjusting existing

tracepoints

○ It will happen along with rtsl integration on rtla

■ So we will have the logical and the timing verification of the proven

scheduling latency.

● Other monitors for RT

○ Function calls that are not guaranteed to be real-time

○ [Potential] priority inversion scenarios

● I am working with ETH Zurich and the University of Copenhagen on

other types of formalism

○ They are more complex than automata, and allow timing in the equations

The RV subsystem

Questions?

RV Where are we?

38

