
Brought to you by

OSNoise Tracer: Who Is
Stealing My CPU Time?

Daniel Bristot de Oliveira, Ph.D.
Principal Software Engineer at

Daniel Bristot de Oliveira
Principal Software Engineer at Red Hat

■ Kernel developer with interest in RT/RV theoretical aspects

■ I am here to share some research that landed into Linux

■ Post-doc researcher at Scuola Superiore Sant'Anna

■ AFK: Photography for mental health, cycling for body health

I am a regular user, how can I see
who is stealing my cpu time?

Use top

top - 18:22:44 up 6 days, 10:05, 1 user, load average: 1.06, 0.95, 0.77

Tasks: 341 total, 3 running, 338 sleeping, 0 stopped, 0 zombie

%Cpu(s): 10.1 us, 2.9 sy, 0.0 ni, 85.8 id, 0.1 wa, 0.6 hi, 0.4 si, 0.0 st

MiB Mem : 15765.3 total, 1518.5 free, 5059.2 used, 9187.5 buff/cache

MiB Swap: 8192.0 total, 8179.7 free, 12.2 used. 8544.4 avail Mem

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

 2156 bristot 20 0 5582816 304464 109084 S 25.7 1.9 125:07.16 gnome-shell

 281950 bristot 20 0 20.7g 383492 187800 S 19.1 2.4 2:15.53 chrome

 281405 bristot 20 0 16.9g 372696 215632 S 18.8 2.3 3:23.05 chrome

 281455 bristot 20 0 17.3g 196280 128200 S 18.5 1.2 3:11.31 chrome

 1961 bristot 20 0 1365748 200180 138840 R 10.2 1.2 104:28.12 Xorg

 286778 bristot 20 0 20.6g 152708 106008 S 2.3 0.9 0:19.14 chrome

 280507 bristot 20 0 767428 53824 37708 R 2.0 0.3 0:07.24 gnome-terminal-

 281456 bristot 20 0 16.5g 121220 91820 S 1.7 0.8 0:41.24 chrome

Brought to you by

Daniel Bristot de Oliveira

bristot@kernel.org

@bristot

That is it!?

Wait, there are still some slides
for the non-regular users.

Introduction

What is OS Noise?

■ The Operating Systems Noise (OS Noise) is a well defined High
Performance Computing (HPC) metric

■ It is the amount of interference experienced by an application due to
operating system activities

■ It is generally a fine grained metric

HPC Workload
■ Generally, HPC workloads are composed of parallel jobs

■ The system is configured with CPUs dedicated to the jobs

■ A dispatcher lunches jobs to these CPUS and wait for completion.

DISPATCHER

Job 2

Job 3

...

Job n

HOUSEKEEP

Job 1

DoneWait

HPC Workload

■ The problem with OS Noise is that the OS interference on a
single job can cause a delay in the entire task:

DISPATCHER

Job 2

Job 3

...

Job n

HOUSEKEEP

Job 1

DoneWait

HPC meets Low Latency

■ Low latency communication are touching the sub millisecond range

● Allowing low latency services in the cloud

■ Many new options enabled by 5G

■ And Linux is becoming part of the core of the network with of NFV

■ This work is not parallel like regular HPC, but serial among the hops.

● The effect of OS Noise are cumulative in the round-trip time

■ Many providers request latency in the order of microseconds.

the state-of-art

How OS Noise is measured today?

■ A tool in user-space reads the time in a loop

● Computes the delta between two time reads

● Report each delta > threshold as a "jitter" or "latency"

■ For the bugging, the user needs to setup a set of tracing events

● The user-space tool stops the trace when hitting a "spike"

■ Human interpretation of the trace

Problems with the current approach

■ The trace and the benchmark tool are not synchronized
● This leaves gaps for interpretation and "doubts"

● Requires the trace of multiple events - to be interpreted by a human

● Too much room for speculation

■ There is no clear definition of the metric
● And so no clear method to debug it

■ Other tools are required for hw/virtualization induced noise:
● most notably hwlat detector

How can these problems be solved?
■ Improve the information given by the measuring tool

● Informing reasons for a given "noise" occurrence

■ Making the workload and the trace to be in sync

● The workload and the trace needs to "atomically" in sync

■ Tracing automation

● Define/standardize the most essential information

● Reduce the amount of events passed to the user (to reduce overhead)

● Do the common interpretation before "printing" the trace

osnoise tracer

osnoise tracer

■ Osnoise is a kernel tracer that also dispatches the workload
● The workload runs in kernel

■ The workload and the trace are synchronized
● Likewise other tools, osnoise measures the time delta

● But it also measures the amount of interference from OS Operations

Enabling osnoise

[root@f32 ~]# cd /sys/kernel/tracing/
[root@f32 tracing]# echo osnoise > current_tracer
[root@f32 tracing]# cat trace

osnoise tracer output

 _-----=> irqs-off
 / _----=> need-resched
 | / _---=> hardirq/softirq
 || / _--=> preempt-depth MAX
 || / SINGLE Interference counters:
 |||| RUNTIME NOISE % OF CPU NOISE +----------------------------+
 TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD
 | | | |||| | | | | | | | | | |
<...>-859 [000] 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1
<...>-860 [001] 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3
<...>-861 [002] 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21
<...>-862 [003] 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0
<...>-863 [004] 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41
<...>-864 [005] 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2
<...>-865 [006] 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1
<...>-866 [007] 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19

osnoise tracer config

■ Configuration files inside /sys/kernel/trace/osnoise

● cpus: CPUs at which a osnoise thread will execute.

● period_us: the period of the osnoise thread.

● runtime_us: how long an osnoise thread will look for noise in the period

● stop_tracing_us: stop the system tracing if a single noise is >= than set here

● stop_tracing_total_us: stop the system tracing if total noise is >= than set here

■ /sys/kernel/trace/tracing_threshold

● The minimum delta between two time() reads to be considered as noise, in us.

● When set to 0, the default value will will be used, which is currently 5 us.

Finding sources of noise

What can steal your cpu time?

■ Characterization of osnoise:
● Any sort of task tha interference (preempt) the osnoise workload

■ Linux task abstractions:
● NMI

● IRQs

● Softirqs

● Threads

■ But also the hardware can interfere on your task
● SMIs

● VMs

■ The osnoise: tracepoints process all the data in kernel, in sync with the tracer
● To reduce overhead when enabled

● No overhead when disabled

■ The events are:
● osnoise:nmi_noise: noise from NMI, including the duration.

● osnoise:irq_noise: noise from an IRQ, including the duration.

● osnoise:softirq_noise: noise from a SoftIRQ, including the duration.

● osnoise:thread_noise: noise from a thread, including the duration.

● osnoise:sample_threshold: printed anytime a noise is found, including the $ of interferences

Osnoise tracepoints

osnoise tracer output

[root@f32 ~]# cd /sys/kernel/tracing/
[root@f32 tracing]# echo osnoise > current_tracer
[root@f32 tracing]# echo osnoise > set_event
[root@f32 tracing]# echo 8 > osnoise/stop_tracing_us
[root@f32 tracing]# cat trace
[...]
 osnoise/8-960 [007] 5789.857530: irq_noise: local_timer:236 start 5789.857527123 duration 1867 ns
 osnoise/8-961 [008] 5789.857532: irq_noise: local_timer:236 start 5789.857529929 duration 1845 ns
 osnoise/8-961 [008] 5789.858408: irq_noise: local_timer:236 start 5789.858404871 duration 2848 ns
migration/8-54 [008] 5789.858413: thread_noise: migration/8:54 start 5789.858409300 duration 3068 ns
 osnoise/8-961 [008] 5789.858413: sample_threshold: start 5789.858404555 duration 8812 ns

 interferences 2

■ osnoise tracks all sources of OS Noise

■ osnoise computes the delta time and the interference counter on every loop

■ When the interference counter == 0:
● The cause of the noise is from outside the OS

● It is computed as hardware, like hwlat detector does

● The hardware can be either physical or virtual VMs

How about hardware noise?

hardware counter output

 _-----=> irqs-off
 / _----=> need-resched
 | / _---=> hardirq/softirq
 || / _--=> preempt-depth MAX
 || / SINGLE Interference counters:
 |||| RUNTIME NOISE % OF CPU NOISE +----------------------------+
 TASK-PID CPU# |||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD
 | | | |||| | | | | | | | | | |
<...>-859 [000] 81.637220: 1000000 190 99.98100 9 18 0 1007 18 1
<...>-860 [001] 81.638154: 1000000 656 99.93440 74 23 0 1006 16 3
<...>-861 [002] 81.638193: 1000000 5675 99.43250 202 6 0 1013 25 21
<...>-862 [003] 81.638242: 1000000 125 99.98750 45 1 0 1011 23 0
<...>-863 [004] 81.638260: 1000000 1721 99.82790 168 7 0 1002 49 41
<...>-864 [005] 81.638286: 1000000 263 99.97370 57 6 0 1006 26 2
<...>-865 [006] 81.638302: 1000000 109 99.98910 21 3 0 1006 18 1
<...>-866 [007] 81.638326: 1000000 7816 99.21840 107 8 0 1016 39 19

hardware noise output

[root@f32 ~]# cd /sys/kernel/tracing/
[root@f32 tracing]# echo osnoise > current_tracer
[root@f32 tracing]# echo osnoise > set_event
[root@f32 tracing]# echo 8 > osnoise/stop_tracing_us
[root@f32 tracing]# cat trace
[...]
 osnoise/0-713 [000] 66.570788: irq_noise: local_timer:236 start 66.570786364 duration 1593 ns
 osnoise/2-715 [002] 66.570788: irq_noise: local_timer:236 start 66.570786364 duration 1628 ns
 osnoise/4-717 [004] 66.570788: irq_noise: local_timer:236 start 66.570786377 duration 1568 ns
 osnoise/0-713 [000] 66.570871: sample_threshold: start 66.570862574 duration 8038 ns interference 0
 osnoise/3-716 [003] 66.571788: irq_noise: local_timer:236 start 66.571786373 duration 1555 ns
 osnoise/7-720 [007] 66.571788: irq_noise: local_timer:236 start 66.571786396 duration 1536 ns

■ osnoise tracer puts the workload and the tracer in a single tool

■ Provides information and tracing that points to the root cause of OS Noise
● Processing the data to reduce the overhead to the minimum possible

■ It can also be used to detect hardware latency

■ The timerlat tracer is osnoise's sibling for interrupt based latency.

■ It is part of the kernel and is enabled on recent Fedora/CentOS/Red Hat

■ rtla tool adds an intuitive interface for osnoise tracer

Final thoughts

Brought to you by

Daniel Bristot de Oliveira

bristot@kernel.org

@bristot

mailto:bristot@kernel.org

