
A maintainable and scalable
Kernel qualification approach for

Automotive

Gabriele Paoloni (Intel)
Daniel Bristot de Oliveira (Red Hat)

Work-in-Progress - License: CC-BY-4.0

Disclaimer

Note that this is currently WIP.

No formal results are binding on behalf of
ELISA/Linux foundation, nor we make any safety
claims based on this preliminary report..

Work-in-Progress - License: CC-BY-4.0

Agenda
- In-scope and out-of-scope of the presentation

- Possible Functional Safety qualification approaches for Linux

- The Hybrid qualification approach

- Hybrid approach applied: ioctl() example

- Integration Tests through Runtime Verification (RV) Monitors

- Next steps

- Q&A

Work-in-Progress - License: CC-BY-4.0

In/out of the scope of this presentation

In Scope:

- Proposal and high level description of a functional safety (FuSa) qualification flow of Kernel
code allocated with safety requirements to meet a certain ASIL target according to ISO26262

Out of Scope:

- FuSa qualification of the HW
- FuSa qualification according to safety standards beyond ISO26262
- FFI claim between coexisting Kernel partitions allocated with different ASIL levels

Work-in-Progress - License: CC-BY-4.0

ISO26262 Introduction

• ISO26262 provides three options to qualify pre-existing SW components
• Part 8.12:

• It is a black box approach
• Based on verifying the SW component to meet the allocated top level nominal and safety requirements.
• Although there are not explicit statements about complexity, it is commonly accepted only for simple SW

components whose behavior can be comprehensively described by the top level specifications;
• Part 6:

• It is a modular and hierarchical white box approach:
• It is suitable to develop and assess SW components of any complexity.

• Part 8.14
• It is a qualification based on the proven in use of the SW component
• Enough statistical data about failures in time of the SW component must be available
• The component configuration and its usage conditions must be identical or have a high degree of

commonality with those used to collect the statistical failure data
• The approach is harder to scale to different HW, Configurations, Use Cases

• Part 10.9
• It is a qualification or development approach based on assumptions (assumed safety, nominal requirements

and conditions of use). Practically speaking it redirects to any acceptable development or qualification
approach already defined in other parts of the ISO26262 standard

• It doesn’t provide an additional approach in practice

Work-in-Progress - License: CC-BY-4.0

Part 8 Standard Approach
Technical Safety

Concept

Safety and nominal
Requirements

Pre-existing code

Requirement based
Testing

Validation Tests

Amount of collaterals
to maintain

Low

Low-Med

Work-in-Progress - License: CC-BY-4.0

Part 6 Standard Approach
Technical Safety

Concept

Safety and nominal
Requirements

SW Architectural
Design

Unit Design (functions)

Implementation

Unit Tests

Integration Tests

PlatformTests

Validation Tests

Amount of collaterals
to maintain

Low

High

Work-in-Progress - License: CC-BY-4.0

ISO26262's possible approaches for Linux

• Given the current state of ISO26262:

• Linux is too complex to be qualified by ISO26262 Part 8.12 alone

• The SEooC approach only covers the requirements definition, the rest of the

component is still to be qualified according to a possible ISO26262 method.

• It could be assessed according to Part 6; however, the application of the

ISO26262 Part 6 in Linux is challenging, especially with respect to the

amount of work required to meet the clauses of unit design,

implementation and testing

• It could be qualified according to part 8.14, but only if statistical data is

available for the specific HW, Configuration and Usage conditions of the

target system where Linux is deployed.

Work-in-Progress - License: CC-BY-4.0

ISO26262-6 pain points in Linux

• Specific notations for the unit design:

• Informal notation for ASIL up to B

• Semi-formal or formal notation for ASIL C and beyond

• Specific design/implementation principles for SW units

• One entry/exit point in each function

• No dynamic objects/variables

• No multiple use of variable names

• No implicit type conversion

• No unconditional jumps

• (and so on…)

• Unit tests verification:

• 100% code coverage and requirements coverage of SW units

Linux accounts for:

• > 80 thousands functions

• > 15 million lines of code

The effort to write and maintain the documentation, tests and infrastructure is not viable.

Work-in-Progress - License: CC-BY-4.0

ISO26262 Dilemma:

Linux is too complex

for Part 8.12

Part 6 is too complex

for Linux
✖

Work-in-Progress - License: CC-BY-4.0

The hybrid approach

Work-in-Progress - License: CC-BY-4.0

Linux Kernel*

A hybrid safety approach

• Partition Linux in blocks of SW

elements

• Define each block as a SW unit

• Qualify each SW unit according to

ISO26262 Part 8.12

• Follow ISO26262 Part 6 to assess the

Kernel as an integration of multiple

FuSa qualified units working together

to meet a certain ASIL target

Work-in-Progress - License: CC-BY-4.0

VFSMemory
Managementscheduler

Watchdog
Device
Drivers

Security
Subsystem

Arch
Subsystem
(e.g. x86)

Assessed following part6

Qualified following part8.12

(*): The map of subsystems/drivers is incomplete and is intended to present the concept only

Proposal: Hybrid Approach

Technical Safety
Concept

Safety Requirements;
Nominal Requirements

SW Architectural
Design

Block Specifications
(SW unit)

Pre-existing code

Block Testing

Integration Tests

PlatformTests

Validation Tests

Amount of collaterals
to maintain

Low

Med

Part6

Part8.12

Work-in-Progress - License: CC-BY-4.0

Safety validity of the hybrid approach

• ISO26262-8.12 is already used to qualify pre-existing SW components of limited
complexity

• If a SW component is FuSa qualified it can be integrated into a SW framework
assigned with the same or lower ASIL target

• as long as the assumed safety requirements as well as the conditions of
use are defined and met

• In Linux we integrate multiple qualified drivers and subsystems in a hierarchical,
scalable way

It is important to decide the criteria for a single subsystem/driver (unit) to be ‘simple’
enough to be qualified according to 8.12 or not.

Work-in-Progress - License: CC-BY-4.0

Proposal – hybrid approach in Linux

Define and allocate
assumed safety

requirements for a
critical unit (a partition

of the system)
Create semi-formal or
formal specification for
the unit in interacting

with other units

Cross check the system
and the specification

using Runtime
Verification and kselftest

results

Monitor the system at
runtime (optional)

Keep in the loop if
the a satisfactory
specification is found.

Documentation of
critical units
(kernel-doc)

CI/CD to monitor
changes

Write kselftets on the
basis of the kernel-doc

specs

Write safety analyses on
for the critical units

Work-in-Progress - License: CC-BY-4.0

Write kselftets on the
basis of the semiformal

or formal specs

ISO26262 Dilemma

How to partition the system into SW blocks/units to be qualified

according to part8.12?

 What is the granularity that makes a unit simple enough to be

qualified according to 8.12?

What is the criteria providing confidence on the right granularity?

Work-in-Progress - License: CC-BY-4.0

Granularity Criteria
Part8.12 requires the specification of the SW component under qualification
in terms of:

- Known safety requirements;
- Functional requirements;
- Behavior in case of failure
- Resource usage
- Description of required and provided interfaces and shared resources
- Configuration Description

If we are able to specify comprehensively in natural language all of the
specs above, the level of granularity for the single unit is the right one

Work-in-Progress - License: CC-BY-4.0

Linux is already partitioned!

• Linux is already partitioned in subsystems by the MAINTAINERS file1

• Use the MAINTAINERS granularity as starting point

• Maintainers are humans!

• It is easy to map the code to the responsible for it

• But we will need the support from them

• If a subsystem or driver is too complex it can be divided further

• it is trivial to maintain a new file defining the partitioning of Linux into our

safety units

In summary MAINTAINERS can be a starting point

[1] https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/MAINTAINERS

Work-in-Progress - License: CC-BY-4.0

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/MAINTAINERS

Example: telltale use case

Technical Safety
Concept

Safety Requirements;
Nominal Requirements

SW Architectural
Design

Block Specifications
(SW units)

Pre-existing code

https://github.com/elisa-tech/wg-automotive/blob/mas
ter/use-cases/telltale.md

Work-in-Progress - License: CC-BY-4.0

Example: telltale use case

Technical Safety
Concept

Safety Requirements;
Nominal Requirements

SW Architectural
Design

Block Specifications
(SW Units)

Pre-existing code

KSR_0004

Watchdog
Timeout
Setting

The watchdog subsystem
shall ensure the WD timeout
to be set according to the
IOTCL input parameter

start_kernel()
SYSCALL_DEFINE3(i
octl, unsigned int, fd,
unsigned int, cmd,
unsigned long, arg)
[calling
watchdog_ioctl()]

https://docs.google.com/spreadsheets/d/1EKwDUjBGGmO
1ltzYsIbZi4K1Zhfr7WB_VfcZNQ0v3UM/edit#gid=38593770
0

Work-in-Progress - License: CC-BY-4.0

Example: telltale use case

Technical Safety
Concept

Safety Requirements;
Nominal Requirements

SW Architectural
Design

Block Specifications
(SW Units)

Pre-existing code
Ref:
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/MAINTAINERS?h=v5.12#n6896

To scope the different SW blocks/units supporting ioctl() we used the
MAINTAINERS file (a starting point).

A SW Unit Block is defined as a group of C and H files

In this deck we focus on the interactions of the SW Unit “FILESYSTEMS (VFS
and infrastructure)” with the other SW Units/Blocks:
FILESYSTEMS (VFS and infrastructure)
M: Alexander Viro <viro@zeniv.linux.org.uk>
L: linux-fsdevel@vger.kernel.org
S: Maintained
F: fs/*
F: include/linux/fs.h
F: include/linux/fs_types.h
F: include/uapi/linux/fs.h
F: include/uapi/linux/openat2.h
X: fs/io-wq.c
X: fs/io-wq.h
X: fs/io_uring.c

Work-in-Progress - License: CC-BY-4.0

Example: telltale use case

Technical Safety
Concept

Safety Requirements;
Nominal Requirements

SW Architectural
Design

Block Specifications
(SW Units)

Pre-existing code

Arch Ref:
https://drive.google.com/file/d/13KJiBJ0XN1SA7So0lVawRWe_3_USQTPN/view?usp=sharing

Incoming function Outgoing function

Work-in-Progress - License: CC-BY-4.0

Example: telltale use case

Technical Safety
Concept

Safety Requirements;
Nominal Requirements

SW Architectural
Design

Block Specifications
(SW Units)

Pre-existing code

Arch Ref:
https://drive.google.com/file/d/13KJiBJ0XN1SA7So0lVawRWe_3_USQTPN/view?usp=sharing
Work-in-Progress - License: CC-BY-4.0

Example: telltale use case

Technical Safety
Concept

Safety Requirements;
Nominal Requirements

SW Architecture

Block Specifications
(SW Units)

Pre-existing code

Block Specs:
https://docs.google.com/document/d/1BV1dysXPXoUH2_A5dMxZwoXStqni-hVlJKqeLoaeS4I/edit

/*
 * SYSCALL_DEFINE3(ioctl, unsigned int, fd, unsigned int, cmd, unsigned
 * long, arg): Kernel entrypoint for the ioctl() syscall.
 * @fd: input file descriptor
 * @cmd: command value
 * @arg: pointer address to user data
 *
 * When ioctl() is invoked, the following steps are
 * performed:
 * - the file descriptor structure is retrieved from the file descriptor
 * table associated with the current task. If the file descriptor table
 * is shared the associated reference count is incremented.
 * Failing to retrieve the fd structure results in -EBADF being returned
 * - security_file_ioctl() is called to check if permissions are in place
 * to execute the ioctl(); if no permissions an error code is returned
 * - if permissions are in place; the file structure associated to the file
 * descriptor is retrieved, the unlocked_ioctl() registered callback is
 * checked and, if not NULL, it is called.
 * If the unlocked_ioctl() function pointer is NULL -ENOTTY is returned.
 * If unlocked_ioctl() succeeds 0 is returned, otherwise the driver
 * specific error value is returned
 * - the reference counter is decreased, if zero the last reference to the
 * file is released (see __fput())
 *
 * Return: on success zero is returned, otherwise one of the appropriate
 * error codes as per description above
 *
 * TODO: documentation is missing for the following CMDs: FIOCLEX,
 * FIONCLEX, FIONBIO, FIOASYNC, FIOQSIZE, FIFREEZE, FITHAM, FS_IOC_FIEMAP,
 * FIGETBSZ, FICLONE, FICLONERANGE, FIDEDUPERANGE, FIBMAP, FIONREAD,
 * FS_IOC_RESVSP, FS_IOC_RESVSP64
 *
 */

Work-in-Progress - License: CC-BY-4.0

Example: telltale use case

Technical Safety
Concept

Safety Requirements;
Nominal Requirements

SW Architectural
Design

Block Specifications
(SW Units)

Pre-existing code

Ref:
https://drive.google.com/file/d/1-qfyfWJasfXc3IES7RUtfnnxkVsKkOkl/view?usp=sharing

Safety Analysis

Work-in-Progress - License: CC-BY-4.0

Example: telltale use case

Technical Safety
Concept

Safety Requirements;
Nominal Requirements

SW Architectural
Design

Block Specifications
(SW Units)

Pre-existing code

code:
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/fs/ioctl.c?h=v5.12#n739

SYSCALL_DEFINE3(ioctl, unsigned int, fd, unsigned int, cmd, unsigned
long, arg)
{

struct fd f = fdget(fd);
int error;

if (!f.file)
return -EBADF;

error = security_file_ioctl(f.file, cmd, arg);
if (error)

goto out;

error = do_vfs_ioctl(f.file, fd, cmd, arg);
if (error == -ENOIOCTLCMD)

error = vfs_ioctl(f.file, cmd, arg);

out:
fdput(f);
return error;

}

Work-in-Progress - License: CC-BY-4.0

Example: telltale use case

Pre-existing code

Block Testing

Integration Tests

PlatformTests

Validation Tests

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/testing/selftests?h=v5.12

Kernel Selftests can be used to define a comprehensive test
campaign for the block “FILESYSTEMS (VFS and infrastructure)” wrt
the ioctl() scenario.

The test specifications can be compared against the SW
architectural models, against the kernel-doc headers specifications
and against the safety analysis to build confidence on the test
campaign completeness

TODO: need to evaluate the current Kernel Selftests for ioctl()
against the block specs

Work-in-Progress - License: CC-BY-4.0

Example: telltale use case

Pre-existing code

Block Testing

Integration Tests

PlatformTests

Validation Tests

The SW Architecture diagrams built for the ioctl()
scenario are automatically implemented in runtime
verification monitors that can be used in the
verification phase to make sure the code to behave as
modelled

If either the code is wrong or the model is wrong, an
exception if raised and the test fails

Work-in-Progress - License: CC-BY-4.0

Runtime Verification (RV)

• Runtime Verification (RV) is a lightweight (yet rigorous) formal verification

method

• It complements other formal methods (such as model checking and theorem

proving)

• RV works by analyzing the trace of the system's actual execution, comparing it

against a formal specification of the system behavior

Work-in-Progress - License: CC-BY-4.0

RV in the approach: why do we care?

• It closes the loop between the kernel and the

specification

• Cross verify the system and the documentation

• It allows us to "run" the documentation in

kernel.

• Enable the continuous integration tests

• Perform runtime monitoring of the system

Requirements
SW Architectural

Design

Runtime Verification
Monitor

SW Monitor

Blocks
Specifications

CI/CD to monitor
changes

Tests to exercise the
system

Safety Analyses

Work-in-Progress - License: CC-BY-4.0

Runtime Monitor (RV)

Runtime Verification

Monitor SpecificationSystem Trace

RV
Reactor

✅

❌

247309: schedule <-worker_thread
247309: preempt_count_add <-schedule
247309: wq_worker_sleeping <-schedule
247309: kthread_data <-wq_worker_sleeping
247310: preempt_count_sub <-schedule
247310: preempt_count_add <-schedule
247310: rcu_note_context_switch <-__sched

Goto fail-safe modeWARN() Fix the doc

Linux Realm Formal Realm

Work-in-Progress - License: CC-BY-4.0

Automata based Runtime Verification

• Over the last years, a RV method using automata theory has been refined

• Automata is flexible, intuitive and can be used to specify complex parts of the

system:

• See paper: A Thread Synchronization Model for the PREEMPT_RT Linux

Kernel (+9k states, +21k transitions)

• Build from small specifications (all < 10 states)

Work-in-Progress - License: CC-BY-4.0

Automata based Runtime Verification

• It is faster to verify the system online than just saving the trace for later analysis

• See Paper: Efficient Formal Verification for the Linux Kernel

Work-in-Progress - License: CC-BY-4.0

Hybrid approach and Runtime Verification

Work-in-Progress - License: CC-BY-4.0

RV interface and dot2k

• Runtime Verification Interface for the Linux kernel is on submission to LKML

• The Runtime Verification (RV) interface

• https://lore.kernel.org/lkml/cover.1621414942.git.bristot@redhat.com/

• A dot2k tool that automatically generate the runtime monitor code

• The developer only needs to do the instrumentation

• Connect the specification events o the kernel events

• An intuitive interface to control monitors of the system

• It is based on Linux kernel trace interface

Work-in-Progress - License: CC-BY-4.0

https://lore.kernel.org/lkml/cover.1621414942.git.bristot@redhat.com/

Automatic monitor generation

• Automatic code generation is as easy as:

• $ dot2k -d ~/wip.dot -t per_cpu

• See [1]

• The work left to be done is the connection between the model events and the

kernel events

• It uses the existing kernel trace infrastructure, an event can be:

• A tracepoint

• A function

• A kprobe...

• See [2] for an example of instrumentation

Work-in-Progress - License: CC-BY-4.0

[1] https://lore.kernel.org/lkml/84ea1e70b846e6fefdaafe4ce5e3c1a5cb49aace.1621414942.git.bristot@redhat.com/

[2] https://lore.kernel.org/lkml/8ffcb3a4c8b55ef63cc02b487aa1c8ad5bf3f800.1621414942.git.bristot@redhat.com/

https://lore.kernel.org/lkml/84ea1e70b846e6fefdaafe4ce5e3c1a5cb49aace.1621414942.git.bristot@redhat.com/
https://lore.kernel.org/lkml/8ffcb3a4c8b55ef63cc02b487aa1c8ad5bf3f800.1621414942.git.bristot@redhat.com/

[root@f32 ~/] # cd /sys/kernel/tracing/rv/
[root@f32 ~/] # echo panic > monitors/wip/reactors
[root@f32 rv] # echo wip > enabled_monitors

 kworker/u8:0-1150 [003] ...2 12430.492850: event_wip: preemptive x preempt_disable -> non_preemptive
 kworker/u8:0-1150 [003] ...2 12430.492850: event_wip: non_preemptive x preempt_enable -> preemptive (safe)

• Based on ftrace

• Enabling a monitor and instructing it to panic() the system if an

exception is found is as easy as:

• Developer can watch the monitor via ftrace

Work-in-Progress - License: CC-BY-4.0

RV user-interface

For further information

• Last three Red Hat Research Quarterly presents the RV modeling and verification approach

• DE OLIVEIRA, Daniel Bristot; CUCINOTTA, Tommaso; DE OLIVEIRA, Rômulo Silva. *Efficient

formal verification for the Linux kernel.* In: International Conference on Software Engineering

and Formal Methods. Springer, Cham, 2019. p. 315-332.

• DE OLIVEIRA, Daniel B.; DE OLIVEIRA, Rômulo S.; CUCINOTTA, Tommaso. *A thread

synchronization model for the PREEMPT_RT Linux kernel.* Journal of Systems Architecture,

2020, 107: 101729.

• Formal Verification made easy and fast (ELCE 2019)

• https://www.youtube.com/watch?v=BfTuEHafNgg

Work-in-Progress - License: CC-BY-4.0

https://www.youtube.com/watch?v=BfTuEHafNgg

Example: telltale use case

Pre-existing code

Block Testing

Integration Tests

PlatformTests

Validation Tests Top level Platform and Validation tests can be carried
out according to the allocated Kernel Safety
Requirements and Safety Requirements from the
Telltale Safety concept

Work-in-Progress - License: CC-BY-4.0

Next Steps
- Complete the evaluation of the hybrid approach in the context of the telltale use

case from the Automotive WG

- Refine, finalize and build consensus on the hybrid approach in the Development

Process WG

- Develop e refine tools augmenting and supporting the generation of SW

architectural models starting from the code

- Continue the development of the Runtime Verification Interface

- Go high scale by pushing the tools and engaging with maintainers

Work-in-Progress - License: CC-BY-4.0

https://github.com/elisa-tech/wg-automotive/tree/master/use-cases
https://github.com/elisa-tech/wg-automotive/tree/master/use-cases

Questions?

BCKP

