
1

Efficient Formal Verification for the
Linux kernel

Daniel Bristot de Oliveira - Tommaso Cucinotta - Rômulo Silva de Oliveira

2

Efficient Formal Verification for the Linux Kernel – SEFM 2019

Linux and Formal methods
- Linux has been used on many safety-critical and/or real-time systems

- From sensor networks and robotics
- To control of military drones and high-frequency trading systems

- Formal verification of Linux is a non-negotiable requirement for next-generation of
cyber-physical systems, e.g., self-driven cars.

3

Efficient Formal Verification for the Linux Kernel – SEFM 2019

Linux and Formal methods
- The need fomented the application of formal models for Linux.
- Previous work using automata-based models has shown to be practical for Linux

developers.
- Because of the rich tracing features already present on kernel...
- Linux is already analyzed as a Discrete Event System by practitioners

- However, Linux lacks a methodology for runtime verification that can be applied
broadly throughout all of the in-kernel subsystems, efficiently.
- And the Linux kernel community has shown the desire of exploring such possibility.

4

Paper contributions

5

Efficient Formal Verification for the Linux Kernel – SEFM 2019

Contributions
- This paper proposes an efficient automata-based runtime verification method for the

Linux kernel
- Verifying the correct sequences of in-kernel events as happening at runtime, against

an automata-based model that has been previously created
- Presents an automatic code generation tool for automata-based models

- Takes the advantage of the in-kernel tracing infrastructure to dynamically enable
runtime control of the verification

- Presents a performance evaluation of the verification method

6

Background

7

Efficient Formal Verification for the Linux Kernel – SEFM 2019

Linux Tracing
- Linux has an advanced set of tracing methods, including:

- Tracing of Kernel functions (call and return)
- Tracepoints: specific points in the code
- Dynamic tracepoints: tracepoints dynamically added to a running kernel
- And more

- Trace example:
sh-2038 [002] d... 16230.043339: ttwu_do_wakeup ←try_to_wake_up
sh-2038 [002] d... 16230.043339: check_preempt_curr <-ttwu_do_wakeup
sh-2038 [002] d... 16230.043340: resched_curr <-check_preempt_curr
sh-2038 [002] d... 16230.043343: sched_wakeup: comm=cat pid=2040 prio=120 target_cpu=003

8

Efficient Formal Verification for the Linux Kernel – SEFM 2019

Linux Tracing
- Tracing code call is not hard-coded on Linux

- At boot time, all the tracing calls are transformed into no-op
- Almost no overhead at runtime
- It is enabled on the vast majority of Linux distros

- At runtime, when enabling tracing, no-op are transformed into calls to trace
functions

- More than one tracer function can hook to an trace call, dynamically
- Live Patching uses trace hooks to intercept a bad function call, deviating it to a good

one
- Available for other methods as well, including modules

9

Efficient Formal Verification for the Linux Kernel – SEFM 2019

Automata and DES
- Automata is a method to model Discrete Event Systems (DES)

- Formally, an automaton is defined as:
- G = { X, E, f, x0, Xm }, where:

● X = finite set of states;
● E = finite set of events;
● f = transition function = (X x E) → X;
● x0 = Initial state;
● Xm = set of final states.

- The language - or traces - generated/recognized by G is the L(G).

10

Efficient Formal Verification for the Linux Kernel – SEFM 2019

Automata and DES

11

Related work

12

Efficient Formal Verification for the Linux Kernel – SEFM 2019

FM and OS kernels
- BLAST tool uses control flow automata, along with techniques for state-space reduction,

applied to the verification of safety properties of OS drivers for the Linux and Microsoft
Windows NT kernels.

- Henzinger, Jhala, Majumdar, and Sutre (2002)
- SLAM static code analyzer, enabling C programs to be analyzed to detect violations of certain

conditions. Also used within the Static Driver Verifier (SDV) framework to check Microsoft
Windows device drivers against a set of rules.
- Ball, Rajamani, (2002)

- MAGIC, a tool for automatic verification of sequential C programs against finite state machine
specifications.
- Chaki, Clarke, Groce, Jha, and Veith (2004)
- MAGIC has been used to verify locking correctness (deadlock-freedom) in the Linux kernel.

13

Efficient Formal Verification for the Linux Kernel – SEFM 2019

FM and Linux Community
- Lockdep is in-kernel tool able to identify errors in the use of locking primitives that

could eventually lead to deadlocks.
- Linux Kernel Memory Consistency Model (LKMM) subsystem, is an array of tools that

formally describe the Linux memory consistency model, and also producing “litmus
tests” in the form of kernel code that can be executed and tested directly.

- The TLA+ formalism has been successfully applied to discover bugs in the Linux kernel.
Examples:
- Confirmed a bug w.r.t. the correctness of memory management locking during a

context switch
- Bug w.r.t. fairness properties of the arm64 ticket spinlock implementation.

14

Efficient Formal Verification for the Linux Kernel – SEFM 2019

Automata and Linux
- LTTng [tracing tool] used to compare Linux execution against simple automata

models.
- Matni, Dagenais (2009)

- SABRINE: An approach using tracing and automata for state-aware robustness testing
of OSes.
- Trace are transformed into automata to group function into a state.
- Cotroneo, Leo, Fucci, Natella (2013)

- TIMEOUT extends SABRINE with timing information for RTOS
- Shahpasand, Sedaghat, Paydar (2016)

15

Efficient Formal Verification for the Linux Kernel – SEFM 2019

PREEMPT_RT Model
- PREEMPT_RT Model is an automata model that describe the interaction of the

synchronization mechanisms and scheduling for threads, IRQs and NMIs.
- Aiming to formally describe the dynamics of Real-time Linux.
- de Oliveira, D.B., Cucinotta, T., de Oliveira, R.S.: Untangling the Intricacies of Thread

Synchronization in the PREEMPT RT Linux Kernel. In: Proceedings of the IEEE 22nd
International Symposium on Real-Time Distributed Computing (ISORC). Valencia,
Spain (May 2019)

- > 9k states and & > 23k transitions
- During the development, we found 4 bugs in kernel

- 3 of them that could not be detected by any other tool

16

Efficient Formal Verification for the Linux Kernel – SEFM 2019

PREEMPT_RT Model
- Linux kernel community found value in the model for discovering bugs

- Automata seems to be a good abstraction because of tracing
- The limitation of previous work:

- The verification was done in user-space
- Required the transfer of a considerable amount of data from kernel to user-space

- 30 seconds of trace generates 2.5 GB of data/CPU!
- No in-kernel actions could be taken in the case of an unexpected event

● e.g., stacktrace, create a crash dump...

17

Efficient automata
verification for the Linux
Kernel

18

Proposed approach

Efficient Formal Verification for the Linux Kernel – SEFM 2019

19

1) Code generation
- We develop the dot2c tool to translate the model into code
- It is a python program that has one input:

- An automaton model in the .dot format
- It is an open format (graphviz)
- Supremica tool exports models with this format

Efficient Formal Verification for the Linux Kernel – SEFM 2019

20

Code generation

[bristot@t460s dot2c]$./dot2c wakeup_in_preemptive.dot

…..

Wakeup in preemptive model:

Code generation:

Efficient Formal Verification for the Linux Kernel – SEFM 2019

21

Automaton in C
enum states {

preemptive = 0,
non_preemptive,
state_max

};

enum events {
preempt_disable = 0,
preempt_enable,
sched_waking,
event_max

};

struct automaton {
char *state_names[state_max];
char *event_names[event_max];
char function[state_max][event_max];
char initial_state;
char final_states[state_max];

};

Efficient Formal Verification for the Linux Kernel – SEFM 2019

22

Automaton in C
enum states {

preemptive = 0,
non_preemptive,
state_max

};

enum events {
preempt_disable = 0,
preempt_enable,
sched_waking,
event_max

};
....
struct automaton aut = {

.event_names = { "preempt_disable", "preempt_enable", "sched_waking" },

.state_names = { "preemptive", "non_preemptive" },

.function = {
{ non_preemptive, -1, -1 },
{ -1, preemptive, non_preemptive },

},
.initial_state = preemptive,
.final_states = { 1, 0 }

};

Efficient Formal Verification for the Linux Kernel – SEFM 2019

23

Processing functions

Efficient Formal Verification for the Linux Kernel – SEFM 2019

24

Processing one event
char process_event(struct verification *ver, enum events event)
{

int curr_state = get_curr_state(ver);
int next_state = get_next_state(ver, curr_state, event);

if (next_state != NULL) {
set_curr_state(ver, next_state);

debug("%s -> %s = %s %s\n",
 get_state_name(ver, curr_state),
 get_event_name(ver, event),
 get_state_name(ver, next_state),
 next_state ? "" : "safe!");

return true;
}

error("event %s not expected in the state %s\n",
get_event_name(ver, event),
get_state_name(ver, curr_state));

stack(0);

return false;
}

Efficient Formal Verification for the Linux Kernel – SEFM 2019

25

Processing one event
char *get_state_name(struct verification *ver, enum states state)
{

return ver->aut->state_names[state];
}

char *get_event_name(struct verification *ver, enum events event)
{

return ver->aut->event_names[event];
}

char get_next_state(struct verification *ver, enum states curr_state, enum events event)
{

return ver->aut->function[curr_state][event];
}

char get_curr_state(struct verification *ver)
{

return ver->curr_state;

}

void set_curr_state(struct verification *ver, enum states state)
{

ver->curr_state = state;
}

Efficient Formal Verification for the Linux Kernel – SEFM 2019

26

Processing one event
char *get_state_name(struct verification *ver, enum states state)
{

return ver->aut->state_names[state];
}

char *get_event_name(struct verification *ver, enum events event)
{

return ver->aut->event_names[event];
}

char get_next_state(struct verification *ver, enum states curr_state, enum events event)
{

return ver->aut->function[curr_state][event];
}

char get_curr_state(struct verification *ver)
{

return ver->curr_state;

}

void set_curr_state(struct verification *ver, enum states state)
{

ver->curr_state = state;
}

All operations are O(1)!

Only one variable to keep the state!
Efficient Formal Verification for the Linux Kernel – SEFM 2019

27

3) Verification

Efficient Formal Verification for the Linux Kernel – SEFM 2019

28

Verification
- Verification code is compiled as a kernel module
- Kernel module is loaded to a running kernel

- While no problem is found:
- Either print all event’s execution
- Or run silently

- If an unexpected transitions is found:
- Print the error on trace buffer

Efficient Formal Verification for the Linux Kernel – SEFM 2019

29

Error output
 bash-1157 [003]2.. 191.199172: process_event: non_preemptive -> preempt_enable = preemptive safe!
 bash-1157 [003] dN..5.. 191.199182: process_event: event sched_waking not expected in the state preemptive
 bash-1157 [003] dN..5.. 191.199186: <stack trace>
 => process_event
 => __handle_event
 => ttwu_do_wakeup
 => try_to_wake_up
 => irq_exit
 => smp_apic_timer_interrupt
 => apic_timer_interrupt
 => rcu_irq_exit_irqson
 => trace_preempt_on
 => preempt_count_sub
 => _raw_spin_unlock_irqrestore
 => __down_write_common
 => anon_vma_clone
 => anon_vma_fork
 => copy_process.part.42
 => _do_fork
 => do_syscall_64
 => entry_SYSCALL_64_after_hwframe

Efficient Formal Verification for the Linux Kernel – SEFM 2019

30

Efficient Formal Verification for the Linux Kernel – SEFM 2019

Practical example
- A problem with tracing subsystem was reported using this model’s module

- https://lkml.org/lkml/2019/5/28/680
<recall to open the link>

31

Performance evaluation

32

Efficiency in practice: a benchmark
- Two benchmarks

- Throughput: Using the Phoronix Test Suite
- (highest prio thread wake-up) Latency: Using cyclictest

- Base of comparison:
- as-is: The system without any verification or trace.
- trace: Tracing (ftrace) the same events used in the verification

- Only trace! No collection or interpretation.

Efficient Formal Verification for the Linux Kernel – SEFM 2019

33

Throughput: SWA model

bothsingle

local_irq_enable
preempt_enable

preemptive

might_sleep_function

local_irq_disable
preempt_disable

local_irq_disable
preempt_disable

local_irq_enable
preempt_enable

Efficient Formal Verification for the Linux Kernel – SEFM 2019

34

Benchmark: Thoughput – Low kernel activation

Efficient Formal Verification for the Linux Kernel – SEFM 2019

35

Benchmark: Thoughput – High kernel activation

Efficient Formal Verification for the Linux Kernel – SEFM 2019

36

Benchmark: Cyclictest latency

Efficient Formal Verification for the Linux Kernel – SEFM 2019

37

What it means?
- Trace is enable in production systems
- And is broadly used!

- Hence, the verification can be done in production
- This is useful mainly for debugging problems

- Model the expected behavior
- Wait for an unexpected event to happen

Efficient Formal Verification for the Linux Kernel – SEFM 2019

38

Future work

39

● Formal verification made easy and fast - Linux Plumbers Conference 2019

Future work
- Extend the work for parametric and/or timed automata
- Integrate the PREEMPT_RT model and this approach
- Create a better interface

- Module is ok, but it can be better
- Either integrated with ftrace or perf + eBPF
- Having some models ready to be used, like trace!

- Creation of new models for the kernel
- Recent update: we will try to model RCU

40

Thank you!
Questions?

This work is made in collaboration with:

the Retis Lab @ Scuola Superiore Sant’Anna (Pisa – Italy)

Universidade Federal de Santa Catarina (Florianópolis - Brazil)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

