
1

Formal verification made easy
And fast!

Daniel Bristot de Oliveira
Principal Software Engineer

2

Linux is complex.

3

Linux is critical.

4

We need to be sure that Linux
behaves as _expected_ .

5

What do we _expect_?

6

Formal verification made easy and fast - Linux Plumbers Conference 2019

What do we _expect_?
- We have a lot of documentation explaining what is expected!

- In many different languages!
- We have a lot of “ifs” that asserts what is expected!
- We have lots of tests that check if part of the system behaves as

expected!

7

Formal verification made easy and fast - Linux Plumbers Conference 2019

These things are good. But...
- How do we check that our reasoning is right?
- How do we check that our asserts are not contradictory?
- How do we check that we are covering all cases?

8

Formal verification made easy and fast - Linux Plumbers Conference 2019

What do we need?
- An intuitive way to describe what we expect
- Using a method that enables the verification of the description
- And a methodology that allows us to cover all “cases”

- While scaling well...

9

We need formal models.

10

We already have some
examples!

11

But we need a more
“generic” and “intuitive
way” for modeling.

12

● Formal verification made easy and fast - Linux Plumbers Conference 2019

How can we turn modeling easier?
- Using a formal method that looks natural for us!
- How do we naturally “observe” the dynamics of Linux?

13

We trace events!

14

● Formal verification made easy and fast - Linux Plumbers Conference 2019

While tracing we...

^C^V from
https://www.geeksforgeeks.org/states-of-a-process-in-operating-systems/

https://www.geeksforgeeks.org/states-of-a-process-in-operating-systems/

15

● Formal verification made easy and fast - Linux Plumbers Conference 2019

State-Machines
- State machines are Event-driven systems
- Event-driven systems describe the system evolution as trace of events
- As we do for run-time analysis.

 tail-5572 [001]1.. 2888.401184: preempt_enable: caller=_raw_spin_unlock_irqrestore+0x2a/0x70 parent= (null)
 tail-5572 [001]1.. 2888.401184: preempt_disable: caller=migrate_disable+0x8b/0x1e0 parent=migrate_disable+0x8b/0x1e0
 tail-5572 [001]111 2888.401184: preempt_enable: caller=migrate_disable+0x12f/0x1e0 parent=migrate_disable+0x12f/0x1e0
 tail-5572 [001] d..h212 2888.401189: local_timer_entry: vector=236

16

Formal verification made easy and fast - Linux Plumbers Conference 2019

This is the continuation of last year’s talk here at LPC:

I’ve heard this story before...

17

Formal verification made easy and fast - Linux Plumbers Conference 2019

Using automata as formal language

q0 q2
open

q1readclose
write

18

● Formal verification made easy and fast - Linux Plumbers Conference 2019

Is formally defined.
- Automata is a method to model Discrete Event Systems (DES)
- Formally, an automaton G is defined as:

- G = {X , E, f , x0 , Xm }, where:
- X = finite set of states;
- E = finite set of events;
- F is the transition function = (X x E) → X;
- x

0
 = Initial state;

- Xm = set of final states.
- The language - or traces - generated/recognized by G is the L(G).

19

● Formal verification made easy and fast - Linux Plumbers Conference 2019

Automata allows
- The verification of the model

- Deadlock free? Live-lock free?
- Operations

- Modular development

20

● Formal verification made easy and fast - Linux Plumbers Conference 2019

The previous example

q0 q2
open

q1readclose
write

21

● Formal verification made easy and fast - Linux Plumbers Conference 2019

Generators

closed opened
open
close

ready waiting
write
read

22

● Formal verification made easy and fast - Linux Plumbers Conference 2019

Sync of generators

ready.closed

ready.openedopen

waiting.closedwrite
close

waiting.openedwrite

read

open
read

close

23

● Formal verification made easy and fast - Linux Plumbers Conference 2019

Specification

S0 S1
open

write
read

S0

close

S1
write
read

24

Formal verification made easy and fast - Linux Plumbers Conference 2019

Verification

25

● Formal verification made easy and fast - Linux Plumbers Conference 2019

Synch of Generators and Specifications

q0 q4
open

q1q3 read

q2read
write

write

close

26

● Formal verification made easy and fast - Linux Plumbers Conference 2019

Specifications

S0 S1
open
close

write
read

S0

close

S1
write
read

27

● Formal verification made easy and fast - Linux Plumbers Conference 2019

Sync of Generators and Specifications

q0 q2
open

q1readclose
write

28

Why not just draw it?

29

● Formal verification made easy and fast - Linux Plumbers Conference 2019

PREEMPT_RT model
- The PREEMPT RT task model has:

- 12 generators
- 33 specifications
- 9017 states!
- 23103 transitions!

- During development found 3 bugs that would not be detected by other tools...

30

● Formal verification made easy and fast - Linux Plumbers Conference 2019

Academically accepted
Untangling the Intricacies of Thread Synchronization in the PREEMPT_RT Linux Kernel.
Daniel Bristot de Oliveira, Rômulo Silva de Oliveira & Tommaso Cucinotta
2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC)

Modeling the Behavior of Threads in the PREEMPT_RT Linux Kernel Using Automata
Daniel Bristot de Oliveira, Tommaso Cucinotta & Romulo Silva De Oliveira
8th Embedded Operating Systems Workshop (EWiLi 2018)

Automata-Based Modeling of Interrupts in the Linux PREEMPT RT Kernel
Daniel Bristot de Oliveira, Rômulo Silva de Oliveira, Tommaso Cucinotta and Luca Abeni
Proceedings of the 22nd IEEE International Conference on Emerging Technologies And Factory
Automation (ETFA 2017)

31

How to verify that the
system _behaves_?

32

Comparing system
execution against the
model!

33

● Formal verification made easy and fast - Linux Plumbers Conference 2019

Previous version

34

● Formal verification made easy and fast - Linux Plumbers Conference 2019

New approach

35

● Formal verification made easy and fast - Linux Plumbers Conference 2019

Automata example...

36

● Formal verification made easy and fast - Linux Plumbers Conference 2019

Automaton in C
enum states {

preemptive = 0,
non_preemptive,
state_max

};

enum events {
preempt_disable = 0,
preempt_enable,
sched_waking,
event_max

};

struct automaton {
char *state_names[state_max];
char *event_names[event_max];
char function[state_max][event_max];
char initial_state;
char final_states[state_max];

};

37

● Formal verification made easy and fast - Linux Plumbers Conference 2019

Automaton in C
enum states {

preemptive = 0,
non_preemptive,
state_max

};

enum events {
preempt_disable = 0,
preempt_enable,
sched_waking,
event_max

};
....
struct automaton aut = {

.event_names = { "preempt_disable", "preempt_enable", "sched_waking" },

.state_names = { "preemptive", "non_preemptive" },

.function = {
{ non_preemptive, -1, -1 },
{ -1, preemptive, non_preemptive },

},
.initial_state = preemptive,
.final_states = { 1, 0 }

};

38

● Formal verification made easy and fast - Linux Plumbers Conference 2019

Processing one event
char process_event(struct verification *ver, enum events event)
{

int curr_state = get_curr_state(ver);
int next_state = get_next_state(ver, curr_state, event);

if (next_state >= 0) {
set_curr_state(ver, next_state);

debug("%s -> %s = %s %s\n",
 get_state_name(ver, curr_state),
 get_event_name(ver, event),
 get_state_name(ver, next_state),
 next_state ? "" : "safe!");

return true;
}

error("event %s not expected in the state %s\n",
get_event_name(ver, event),
get_state_name(ver, curr_state));

stack(0);

return false;
}

39

● Formal verification made easy and fast - Linux Plumbers Conference 2019

Processing one event
char *get_state_name(struct verification *ver, enum states state)
{

return ver->aut->state_names[state];
}

char *get_event_name(struct verification *ver, enum events event)
{

return ver->aut->event_names[event];
}

char get_next_state(struct verification *ver, enum states curr_state, enum events event)
{

return ver->aut->function[curr_state][event];
}

char get_curr_state(struct verification *ver)
{

return ver->curr_state;

}

void set_curr_state(struct verification *ver, enum states state)
{

ver->curr_state = state;
}

40

● Formal verification made easy and fast - Linux Plumbers Conference 2019

Processing one event
char *get_state_name(struct verification *ver, enum states state)
{

return ver->aut->state_names[state];
}

char *get_event_name(struct verification *ver, enum events event)
{

return ver->aut->event_names[event];
}

char get_next_state(struct verification *ver, enum states curr_state, enum events event)
{

return ver->aut->function[curr_state][event];
}

char get_curr_state(struct verification *ver)
{

return ver->curr_state;

}

void set_curr_state(struct verification *ver, enum states state)
{

ver->curr_state = state;
}

All operations are O(1)!

Only one variable to keep the state!

41

There is not free meal!

42

● Formal verification made easy and fast - Linux Plumbers Conference 2019

The price is in the data structure
- The vectors and matrix are not “compact” data structure
- BUT!
- The PREEEMPT_RT model, with:

- 9017 states!
- 23103 transitions!
- Compiles in a module with < 800KB
- Acceptable, no?

43

How _efficient_ is this
ideia?

44

● Formal verification made easy and fast - Linux Plumbers Conference 2019

Efficiency in practice: a benchmark
- Two benchmarks

- Throughput: Using the Phoronix Test Suite
- Latency: Using cyclictest

- Base of comparison:
- as-is: The system without any verification or trace.
- trace: Tracing (ftrace) the same events used in the verification

- Only trace! No collection or interpretation.

45

● Formal verification made easy and fast - Linux Plumbers Conference 2019

Throughput: SWA model

bothsingle

local_irq_enable
preempt_enable

preemptive

might_sleep_function

local_irq_disable
preempt_disable

local_irq_disable
preempt_disable

local_irq_enable
preempt_enable

46

Formal verification made easy and fast - Linux Plumbers Conference 2019

Benchmark: Thoughput – Low kernel activation

47

Formal verification made easy and fast - Linux Plumbers Conference 2019

Benchmark: Thoughput – High kernel activation

48

Formal verification made easy and fast - Linux Plumbers Conference 2019

Benchmark: Cyclictest latency

49

● Formal verification made easy and fast - Linux Plumbers Conference 2019

Academically accepted
Efficient Formal Verification for the Linux Kernel
Daniel Bristot de Oliveira, Rômulo Silva de Oliveira & Tommaso Cucinotta
17th International Conference on Software Engineering and Formal Methods (SEFM)

More info here: http://bristot.me/efficient-formal-verification-for-the-linux-kernel/

50

So, what is next?

51

Formal verification made easy and fast - Linux Plumbers Conference 2019

A better interface
- Loading the module is not that practical
- How about an interface like ftrace?

- /sys/kernel/debug/verification/
- Would enable many verification models to be loaded
- Enable/disable verification
- Enable/disable options

- Or should I use eBPF + perf?
- perf verify “model.dot” translation_trace_to_events.txt

52

Formal verification made easy and fast - Linux Plumbers Conference 2019

What should we model?
- I am currently working to make the RT task model to work

- Different viewpoint: from per-task to per-cpu
- But there are other possible things to model

- Locking (part of lockdep)
- Why?
- Run-time without recompile/reboot.

- RCU?
- Schedulers?

53

Something else?

54

Thank you!

This work is made in collaboration with:

the Retis Lab @ Scuola Superiore Sant’Anna (Pisa – Italy)

Universidade Federal de Santa Catarina (Florianópolis - Brazil)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

