- redhat

Beyond the latency: New metrics
for the real-time kernel

Daniel Bristot de Oliveira

In the beginning

In the begin a program was only a logical sequence,
Then gosh said: we can’t wait forever, we need to put time on this,

Since then we have two problems:
The logical correctness, and the timing correctness.

Q. redhat.

In theory...

The systems defined as a set of tasks T
Each task is a set of variables that defines its timing behavior, e.qg.,

T.-(P,C,D,B,J]

Then, they try to define/develop a scheduler in such way that,
for each taskiin T:
the response time of 7; < D,

Q. redhat.

For task level fixed priority scheduler:

Y taskie .
W.+J.
L J
W.=C,+B. +ZJ€p Pj ;
Ri_Wi+Ji

is schedulable < ¥/ taski€ 1|R, <D,

Q. redhat.

New metrics for the PREEMPT RT

A A
A

A

Activation Start Blocking Interference Finish Next
Activation

Q. redhat.

PREEMPT_RT Timing correctness

The preempt RT main metric is the latency

* |t is good, per carita...

But it is very simplistic, if compared to response time.

Latency is not even clearly defined

* Kernel is seeing as a black box

* There is no guarantee that the latency that took place now, will take
place in the future (reproducibility/repeatability).

It very hard, if not impossible, to give any guarantee in those numbers

* We tried to use Extreme Value Analysis — it does not fit in the
method.

Q. redhat.

PREEMPT_RT Timing correctness

* User applications also depends on other characteristics of the kernel:
* Locking
* Dependence of other tasks
* Interference of other tasks (and IRQSs)

Q. redhat.

New metrics for the PREEMPT RT

* How can we improve the situation for Linux?
 \What are tasks on Linux?
 What are the other metrics?

Execution time of task?

Blocking time? (SCHED_STATS)

* Chain of locks that a task depends
Activation delay? (WAKEUP_DELAY)
* Atomic context delay?
Dependency among tasks?

Q. redhat.

New metrics for the PREEMPT RT

Execution Sched Sched
Sched Context Context Context Context
wakeup switch in switch out switch in switch out
state=D state=S

9 ‘ redhat.

What will | do, e.g., Composition of Latency

preempt_disable_sched

write_abandon
write_acquired
write_blocked
write_lock
mutex_abandon

preempt_disabl

_irq_enable hw_local_irg_disable
irq_enable

loc:
. hw_local_irq_enable hw_local

preempt_enable

cquired
mutex_blocked
mutex_lock preempt_enable_sched /
sched_switch_in — - .
hw_local_irq_disable \ L Tocal_irq_disable

read_abandon
read_acquired
read_blocked
read_lock
preempt_disable_sched
preempt_enable_sched
hw_local_irq_disable
hw_local_irq_enable
local_irq_disable
local_irq_enable
preempt_disable
preempt_enable ~.
schedule_entry
schedule_exit

|_irq_enable
. hw_local_irq_disable
— preempt_disable_sched \\hwflncaliirqfenah]e

| N\

preempt_and _irq_cnable |

\ sched_switch_in_ o

hw_local_irg_enable

L ‘\F . 7:

—— —

local_irq_enable /
_ hw_local_irq_enable [
B —

~ sched_nced_resched

hedule_exit

itq_enable_sched_exit

sched_switch_in
sched_switch_in_o

Q. redhat.

Rescheduling delay

* [need _resched...sched return]
e Case one: in the schedule

— preempt_disable_sched

write_abandon
write_acquired
write_blocked

write_lock]"L“]-i“!-c“ublc hw_local_irq_disable B
mutex_abandon ,,l‘f‘ ocal_irg_enable hw_local_irq_enable ™
mutex_acquired D
mutex_blocked preempt_enable /'

mutex_lock
read_abandon
read_acquired
read_blocked
read_lock
preempt_disable_sched
preempt_enable_sched
hw_local_irg_disable
hw_local_irq_enable
local_irq_disable
local_irq_enable
preempt_disable 5
preempt_enable NG .
schedule_entry ~ — —
schedule_exit -)

"~ local_irq_disable preempt_enable_sched_
__hw_local_irq_disable

sched_switch_in
sched_switch_in_o

AN local_irq_disable
N\, local_irq_enable
. hw_local_irq_disable
___ preempt_disable_sched \wwflncﬂlfirq,enah]e
T~ “\schedule_entry
N\ N

hw_local_irq_disable

preempt_and._irq_enable

local_irq_enable
__ hw_local_irq_enable

iq_enable_sched_exit

sched_switch_in
sched_switch_in_o

1 ‘ redhat.

Rescheduling delay

* [need _resched...sched return]
* Case two: calling the scheduler
* Consider also that we have interference from interrupts

write_abandon

preempt_ disable_sched a
write_acquired

N preempt_disabls - -

write_blocked B) —
write_lock -]"L“]-"‘!-C““blc hw_local_irq_disable

mutex_abandon __ hw_local_irq_enable hw_local_irq_enable

mutex_acquired preempt_enable —_—

mutex_blocked "'

mutex_lock
read_abandon
read_acquired
read_blocked .
read Tock i local_irq_enable
preempt_disable_sched ” — e ~ h?v,local,qu,enable
preempt_enable_sched
hw_local_irg_disable
hw_local_irq_enable
local_irq_disable
local_irq_enable
preempt_disable ~
preempt_enable . N
schedule_entry ~ —
schedule_exit ™~ T

preempt_enable
preempt_enable_sched

. local_irq_disable
hw_l ncaliﬂ"qidl sable

sched_switch_in

hw_local_irq_disable \ AN local_irq_disable
\ local_irq_enable
\\ hw_local_irg_disable
preempt_disable_sched “hw_local_irq_enable
—— “\schedule_entry

N T

any._thread_running

preempt_and._irq_enable

ing_enabled

irq_enable_sched_exit

sched_switch_in —
. sched_switch_in_o

12 ‘ redhat.

13

Thoughts?

It is not reasonable doing this only in user-space
* Too much data

Should | do a trace-plugin?

Use eBPF?

Do something in kernel (lock stat like?)

Q. redhat.

	Slide 1
	What is next?
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

