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In the beginning

In the begin a program was only a logical sequence,
Then gosh said: we can’t wait forever, we need to put time on this,

Since then we have two problems:
The logical correctness, and the timing correctness.

Q. redhat.



In theory...

The systems defined as a set of tasks T
Each task is a set of variables that defines its timing behavior, e.qg.,

T.-(P,C,D,B,J]

Then, they try to define/develop a scheduler in such way that,
for each taskiin T:
the response time of 7; < D,
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For task level fixed priority scheduler:

Y taskie .
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is schedulable < ¥/ taski€ 1|R, <D,
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New metrics for the PREEMPT RT
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PREEMPT_RT Timing correctness

The preempt RT main metric is the latency

* |t is good, per carita...

But it is very simplistic, if compared to response time.

Latency is not even clearly defined

* Kernel is seeing as a black box

* There is no guarantee that the latency that took place now, will take
place in the future (reproducibility/repeatability).

It very hard, if not impossible, to give any guarantee in those numbers

* We tried to use Extreme Value Analysis — it does not fit in the
method.

Q. redhat.



PREEMPT_RT Timing correctness

* User applications also depends on other characteristics of the kernel:
* Locking
* Dependence of other tasks
* Interference of other tasks (and IRQSs)

Q. redhat.



New metrics for the PREEMPT RT

* How can we improve the situation for Linux?
 \What are tasks on Linux?
 What are the other metrics?

Execution time of task?

Blocking time? (SCHED_STATS)

* Chain of locks that a task depends
Activation delay? (WAKEUP_DELAY)
* Atomic context delay?
Dependency among tasks?

Q. redhat.



New metrics for the PREEMPT RT

Execution Sched Sched
Sched  Context Context Context Context
wakeup switch in switch out switch in switch out
state=D state=S
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What will | do, e.g., Composition of Latency
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Rescheduling delay

* [need _resched...sched return]
e Case one: in the schedule
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Rescheduling delay

* [need _resched...sched return]
* Case two: calling the scheduler
* Consider also that we have interference from interrupts
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Thoughts?

It is not reasonable doing this only in user-space
* Too much data

Should | do a trace-plugin?

Use eBPF?

Do something in kernel (lock stat like?)

Q. redhat.
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