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In the begin

In the begin a program was only a logical sequence,
Then gosh said: we can’t wait forever, we need to put time on this,

Since then we have two problems:
The logical correctness, and the timing correctness.



The systems defined as a set of tasks  
Each task is a set of variables that defines its timing behavior, e.g.,

Then, they try to define/develop a scheduler in such way that,
for each task i in   :

the response time of     < Di
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In theory...
τ

τi={P ,C , D ,B , J }

τ
τi
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For task level fixed priority scheduler:

Ri=W i+J i

W i=C i+Bi+∑ j∈hp( i) ⌈ W i+J j

P j
⌉C j

∀ task i∈τ :

is schedulable⇔∀ task i∈τ∣R i<Di
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For Early Deadline First

U i=
C i

P i

is schedulable⇔∀ task i∈τ∣∑U i<1

∀ task i∈τ :



The development of a new scheduler is 
done with mathematical reasoning.



- The system is fully preemptive;
- Tasks are completely independent;
- Operations are atomic;
- There is no overhead.
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But generally, they relax in the task model



We can’t say that these assumptions are 
not realistic...



But, what is our reality?



- The system is not fully preemptive;
- Tasks are not completely independent;
- Operations are not atomic;
- There is overhead.
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Our reality



Math side: But talk is cheap…



Dev side: Read the code, it is there, boy!



Show me the math!

Math side: Talk is cheap...



● Inside our mind, we have an implicit task model:
○ We know preemption causes latency

○ We know the difference in the behavior of a mutex and the spin lock

○ We know we have interrupts

● But, how do we explain these things without missing details?

○ Natural language is ambiguous…

○ e.g., preemption disabled is bad for latency, right?
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Towards a Linux task model



● We need an explicit task model
○ Using a formal language/method

○ Abstracting the code

○ Without losing contact with the terms that we use in practice.
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Towards a Linux task model



● Linux developers use tracing features to analyze the system:
○ They see tracing events that cause states change of the system.

● Discrete Event Systems (DES) methods also use these concepts:
○ events, trace and states...

● DES is can be used in the formalization of system.
● So, why not try to describe Linux using a DES method?
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Toward a Linux task model



● Automata is a method to model Discrete Event Systems (DES)
● Formally, an automaton is defined as:

○ G = {X , E, f , x0 , Xm }, where:

■ X = finite set of states;

■ E = finite set of events;

■ F is the transition function = (X x E) → X;

■ x0  = Initial state;

■ Xm = set of final states.

● The language - or traces - generated/recognized by G is the L(G).
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Background
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Graphical format



● Rather than modeling the system as a single automaton, the modular 
approach uses generators and specifications.
○ Generators:

■ Independent subsystems models

■ Generates all chain of events (without control)

○ Specification:

■ Control/synchronization rules of two or more subsystems

■ Blocks some events

● The parallel composition operation synchronizes them.
○ The result is an automaton with all chain of events possible in a 

controlled system.
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Modeling of complex systems



Example of models
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Generators of events
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Generators of events



Boia,
This is boring…

de!



Specifications: Sufficiency conditions



Specifications: Sufficiency conditions



Specifications: Sufficiency conditions



Specifications: Necessary condition
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Synchronizing the modules, we have the model
The complete model has:

- 12 generators + 33 specifications
- 34 different events
- 13906 states!

The benefit of this:
- Validating the model against the kernel, and vice-versa, is O(1)
- One kernel event generates one automata trasition. 



Nice! But what do we do with this 
information?
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In the begin...
We have two problems:

- The logical correctness,
- The timing correctness.

The model helps in both cases.
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Calling scheduler
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Reference tracing:

 1:   ktimersoftd/0   8 [000]   784.425631:  sched:sched_switch: ktimersoftd/0:8 [120] R ==> kworker/0:2:728 [120]
 2:     kworker/0:2 728 [000]   784.425926:  sched:sched_set_state: sleepable
 3:   kworker/0:2   728 [000]   784.425932:  sched:sched_waking: comm=kworker/0:1 pid=724  prio=120 target_cpu=000
 4:     kworker/0:2 728 [000]   784.425936:  sched:set_need_resched: comm=kworker/0:2 pid=728
 5:     kworker/0:2 728 [000]   784.425941:  sched:sched_entry: at preempt_schedule_common
 6:     kworker/0:2 728 [000]   784.425945:  sched:sched_switch: kworker/0:2:728 [120] R ==> kworker/0:1:724 [120]
 7:  irq/14-ata_piix 86 [000]   784.426515:  sched:sched_waking: comm=kworker/0:2 pid=728 prio=120 target_cpu=000
 8:     kworker/0:1 724 [000]   784.426610:  sched:sched_switch: kworker/0:1:724 [120] t ==> kworker/0:2:728 [120]
 9:     kworker/0:2 728 [000]   784.426616:  sched:sched_entry: at schedule
10:     kworker/0:2 728 [000]   784.426619:  sched:sched_switch: kworker/0:2:728 [120] R ==> kworker/0:2:728 [120]
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Calling scheduler
Event  State
sched_switch_in running
sched_set_state_sleepable sleepable
sched_need_resched preemption_sleepable
schedule_entry preemption_sleepable
sched_switch_preempt preemption_sleepable
sched_waking preemption_to_runnable
sched_switch_in running
schedule_entry vain!



● Example of patch catch’ed with the model
– [PATCH RT] sched/core: Avoid__schedule() being called twice, the second in vain

● I am doing the model verification in user-space now:
– Using perf + (sorry, peterz) tracepoints
– It works, but requires a lot of memory/data transfer:

● Single core, 30 seconds = 2.5 GB of data
● We don’t need all the data, only from a safe state to the problem.

– It performs well, because the automata verification is O(1).
– But still, the amount of data is massive.
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Logical correctness for task model



● Think of a lockdep for PREEMPT_RT model:
– If an unexpected event takes place, we explain why
– Enabled in compilation time
– Running in kernel would avoid copying data/keeping data after reaching a 

safe state

● This is helpful for safe critical systems
– CI
– We might face more problems with merge with the non-rt
– It observes more than just latency
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Should I move it to kernel?



● The latency is good!

● But the model provides way to decompose the latency
– Preempt & IRQ disabled sections...
– Scheduling overhead…
– Locking overhead...
– The response time…
– These all helps to better identify the characteristics of -RT

● And to find regressions in a more fine-grained way.
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Timing correctness



Ok, but this is a longer subject, we will 
talk about it at plumbers.



- There will be gains having more academic people working with “things that 
connect well” with Linux.
- The PREEMPT RT simplifies the task model enough to turn possible the 
modeling
- Using DES/Automata was not that hard as it seems.
- It is an ongoing work.
- The model opens other possibilities for the verification of the kernel-rt.  
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Resume



Thanks!
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