
Mind the gap:
between real-time Linux and real-time theory

Part I

Daniel Bristot de Oliveira

2

In the begin

In the begin a program was only a logical sequence,
Then gosh said: we can’t wait forever, we need to put time on this,

Since then we have two problems:
The logical correctness, and the timing correctness.

The systems defined as a set of tasks
Each task is a set of variables that defines its timing behavior, e.g.,

Then, they try to define/develop a scheduler in such way that,
for each task i in :

the response time of < Di

3

In theory...
τ

τi={P ,C , D ,B , J }

τ
τi

4

For task level fixed priority scheduler:

Ri=W i+J i

W i=C i+Bi+∑ j∈hp(i) ⌈ W i+J j

P j
⌉C j

∀ task i∈τ :

is schedulable⇔∀ task i∈τ∣R i<Di

5

For Early Deadline First

U i=
C i

P i

is schedulable⇔∀ task i∈τ∣∑U i<1

∀ task i∈τ :

The development of a new scheduler is
done with mathematical reasoning.

- The system is fully preemptive;
- Tasks are completely independent;
- Operations are atomic;
- There is no overhead.

7

But generally, they relax in the task model

We can’t say that these assumptions are
not realistic...

But, what is our reality?

- The system is not fully preemptive;
- Tasks are not completely independent;
- Operations are not atomic;
- There is overhead.

10

Our reality

Math side: But talk is cheap…

Dev side: Read the code, it is there, boy!

Show me the math!

Math side: Talk is cheap...

● Inside our mind, we have an implicit task model:
○ We know preemption causes latency

○ We know the difference in the behavior of a mutex and the spin lock

○ We know we have interrupts

● But, how do we explain these things without missing details?

○ Natural language is ambiguous…

○ e.g., preemption disabled is bad for latency, right?

14

Towards a Linux task model

● We need an explicit task model
○ Using a formal language/method

○ Abstracting the code

○ Without losing contact with the terms that we use in practice.

15

Towards a Linux task model

● Linux developers use tracing features to analyze the system:
○ They see tracing events that cause states change of the system.

● Discrete Event Systems (DES) methods also use these concepts:
○ events, trace and states...

● DES is can be used in the formalization of system.
● So, why not try to describe Linux using a DES method?

16

Toward a Linux task model

● Automata is a method to model Discrete Event Systems (DES)
● Formally, an automaton is defined as:

○ G = {X , E, f , x0 , Xm }, where:

■ X = finite set of states;

■ E = finite set of events;

■ F is the transition function = (X x E) → X;

■ x0 = Initial state;

■ Xm = set of final states.

● The language - or traces - generated/recognized by G is the L(G).

17

Background

18

Graphical format

● Rather than modeling the system as a single automaton, the modular
approach uses generators and specifications.
○ Generators:

■ Independent subsystems models

■ Generates all chain of events (without control)

○ Specification:

■ Control/synchronization rules of two or more subsystems

■ Blocks some events

● The parallel composition operation synchronizes them.
○ The result is an automaton with all chain of events possible in a

controlled system.

19

Modeling of complex systems

Example of models

21

Generators of events

22

Generators of events

Boia,
This is boring…

de!

Specifications: Sufficiency conditions

Specifications: Sufficiency conditions

Specifications: Sufficiency conditions

Specifications: Necessary condition

28

Synchronizing the modules, we have the model
The complete model has:

- 12 generators + 33 specifications
- 34 different events
- 13906 states!

The benefit of this:
- Validating the model against the kernel, and vice-versa, is O(1)
- One kernel event generates one automata trasition.

Nice! But what do we do with this
information?

30

In the begin...
We have two problems:

- The logical correctness,
- The timing correctness.

The model helps in both cases.

31

Calling scheduler

32

Reference tracing:

 1: ktimersoftd/0 8 [000] 784.425631: sched:sched_switch: ktimersoftd/0:8 [120] R ==> kworker/0:2:728 [120]
 2: kworker/0:2 728 [000] 784.425926: sched:sched_set_state: sleepable
 3: kworker/0:2 728 [000] 784.425932: sched:sched_waking: comm=kworker/0:1 pid=724 prio=120 target_cpu=000
 4: kworker/0:2 728 [000] 784.425936: sched:set_need_resched: comm=kworker/0:2 pid=728
 5: kworker/0:2 728 [000] 784.425941: sched:sched_entry: at preempt_schedule_common
 6: kworker/0:2 728 [000] 784.425945: sched:sched_switch: kworker/0:2:728 [120] R ==> kworker/0:1:724 [120]
 7: irq/14-ata_piix 86 [000] 784.426515: sched:sched_waking: comm=kworker/0:2 pid=728 prio=120 target_cpu=000
 8: kworker/0:1 724 [000] 784.426610: sched:sched_switch: kworker/0:1:724 [120] t ==> kworker/0:2:728 [120]
 9: kworker/0:2 728 [000] 784.426616: sched:sched_entry: at schedule
10: kworker/0:2 728 [000] 784.426619: sched:sched_switch: kworker/0:2:728 [120] R ==> kworker/0:2:728 [120]

33

Calling scheduler
Event State
sched_switch_in running
sched_set_state_sleepable sleepable
sched_need_resched preemption_sleepable
schedule_entry preemption_sleepable
sched_switch_preempt preemption_sleepable
sched_waking preemption_to_runnable
sched_switch_in running
schedule_entry vain!

● Example of patch catch’ed with the model
– [PATCH RT] sched/core: Avoid__schedule() being called twice, the second in vain

● I am doing the model verification in user-space now:
– Using perf + (sorry, peterz) tracepoints
– It works, but requires a lot of memory/data transfer:

● Single core, 30 seconds = 2.5 GB of data
● We don’t need all the data, only from a safe state to the problem.

– It performs well, because the automata verification is O(1).
– But still, the amount of data is massive.

34

Logical correctness for task model

● Think of a lockdep for PREEMPT_RT model:
– If an unexpected event takes place, we explain why
– Enabled in compilation time
– Running in kernel would avoid copying data/keeping data after reaching a

safe state

● This is helpful for safe critical systems
– CI
– We might face more problems with merge with the non-rt
– It observes more than just latency

35

Should I move it to kernel?

● The latency is good!

● But the model provides way to decompose the latency
– Preempt & IRQ disabled sections...
– Scheduling overhead…
– Locking overhead...
– The response time…
– These all helps to better identify the characteristics of -RT

● And to find regressions in a more fine-grained way.

36

Timing correctness

Ok, but this is a longer subject, we will
talk about it at plumbers.

- There will be gains having more academic people working with “things that
connect well” with Linux.
- The PREEMPT RT simplifies the task model enough to turn possible the
modeling
- Using DES/Automata was not that hard as it seems.
- It is an ongoing work.
- The model opens other possibilities for the verification of the kernel-rt.

38

Resume

Thanks!

	Slide 1
	What is next?
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Real-time Linux analysis
	Slide 15
	Slide 16
	Background
	Graphical format
	Modeling of complex systems
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	That’s all folks! Questions?

