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Why “real-time” Linux?

Real-Time Linux vs Real-Time theory
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Experimental vs Analytical 
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Why “real-time” Linux?

Real-Time Linux vs Real-Time theory
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Real-time analysis

● Based on the timing description of the system

● Capture all behaviors

● Precisely define the worst cases

● But depends on a precise definition of the 

system
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Why “real-time” Linux?

Real-Time Linux vs Real-Time theory
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Linux approach

● Linux was adapted to become a RTOS

● PREEMPT_RT: De facto standard 

● Evaluated (mainly) with cyclictest

● Cyclictest:

○ Practical: lightweight and out-of-the-box

○ It is a “black-box” test

○ No demonstration 

○ Does not provide evidence of “root-cause” 
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Why don’t we apply RT 
analysis on Linux?

Why “Real-time” Linux?
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Linux is complex

Why “Real-time” Linux?

- Lots of contexts

- Lots of hacks

- Lots of information

- Fast pacing

- ...
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The PREEMPT_RT thread model

A way out.
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It defines the specifications of threads synchronization:
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Demystifying the Real-Time Linux Scheduling Latency
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Approach

Formal specification Measurement and analysisScheduling latency bound
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Formal Specification

From formal specification to synchronization rules
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Formally backed natural language arguments

● Generators

○ Basic/Independent behavior

○ e.g., irq_disable/enable, scheduler call

● Translated into a set of operations

● Specifications

○ Relations among generators

○ e.g., necessary conditions to call the scheduler

● Translated into a set of synchronization rules
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Scheduling latency bound

Scheduling latency definition
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From the first necessary 

condition to set need 

resched, to the the last 

action after the 

scheduling, which is 

enabling preemption after 

the return from 

__schedule().

The scheduling latency experienced by an arbitrary thread τ is:

● the longest time elapsed between the time A in which any job of τ 

becomes ready and with the highest priority,

● and the time F in which the scheduler returns and allows τ to execute 

its code.
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Scheduling latency bound

Interference and blocking
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The scheduling latency in 

this paper refers to the 

delay between the 

notification of a new 

highest priority thread, to 

point in which this thread 

starts running its own 

code.

The highest priority thread 

can belong to any 

scheduler: the analysis is 

scheduler independent.

The scheduling latency is caused by:

● Blocking from the current (and so lower) priority 

thread;

● Including scheduling.

● Interference from IRQs and NMI.
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Blocking bound

Blocking bound
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From the specification that bounds the block to a timeline
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Blocking bound

Timeline and cases
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All possible cases
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Blocking bound

Blocking variables
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In the model, the 

preemption control is 

specialized into two 

different operations: to 

postpone the scheduler 

(the most known 

behavior) or to protect the 

execution of the 

__schedule() function from 

recursion.

● DPOID: preemption or interrupts disabled to 

postpone the scheduler;

● DPAIE: preemption and interrupts enabled, as a 

transient state from poid to psd; when scheduling 

a new highest priority thread.

● DPSD: preemption disable to schedule;

● DST: delay caused by the scheduling tail; the “non 

return” point in which a new arrived task will have to 

wait for the current scheduling operation to finish 

before scheduling.
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Rtsl toolking

Timeline and cases
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Variables in the the timeline
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Interference bound

Timeline and cases
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IRQ and NMI interference
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Scheduling latency bound

And the scheduling latency bounds to:
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The bound considers all 

possible cases. Note that 

the Latency L is present in 

both sides of the equation.

So, L is bounded by the 

least positive value 

fulfilling the equation (like 

on RTA).

L = max(DST, DPOID) + DPAIE + DPSD + INMI(L) + IIRQ(L)
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Interrupts characterization

Interrupts are workload dependent
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This topic was heavily 

discussed at the Real-time 

Micro Conference (inside 

Linux Plumbers) in 2019, 

more info here:

● Instead of proposing “the best” interrupt 

characterization, the rtsl reports the scheduling 

latency based on some well-known 

characterizations:
○ No interrupt

○ Worst single interrupt

○ Single occurence of all interrupts

○ Sporadic 

○ Sliding window (Author’s preferred)

○ Sliding window with oWCET 
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rt_sched_latency toolkit

A practical scheduling latency estimation tool
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Method and challenges 

● Based on the latency bound

● The latency bound is based on the model

● The model is based on tracing of events

○ but high frequency events

■ hundreds MB/sec/CPU

● Challenges:

○ To minimize the (runtime) overhead 

○ Work out-of-the-box
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A toolkit

Based on perf

Works in two phases:

- The record mode 
saves the trace data;

- The report mode 
process the trace 
and does the 
analysis.

rt_sched_latency (rtsl)
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rt_sched_latency toolkit

record phase
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Low overhead trace recording

● Filters the high frequency trace

○ Doing in-kernel processing

● For blocking variables:

○ Reports only the discover of new max values 

● For IRQ and NMI:

○ Reports one event for each occurrence

● Discounts the interference:

○ e.g., IRQ interference on a poid
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rt_sched_latency toolkit

report phase
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Low overhead trace recording

● After the capture, analyzes the trace.

○ All in user-space.

● Most of the analysis is done in python

○ Easy to extend

● Two outputs:

○ Textual: good for debug

○ Chart: good comparisons (and papers :-))

● Does a per-cpu scheduling latency analysis

○ Using different IRQ/NMI characterization...
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rt_sched_latency toolkit

rtsl report output
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Textual output
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rt_sched_latency toolkit

rtsl report output
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Chart output



Demystifying The Real-Time Linux Scheduling Latency - 32nd Euromicro Conference on Real-Time Systems - ECRTS’20

Experiments

Experiments
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The experiments passed 

by the artifact evaluation!● Scheduling latency measurements on two systems:
○ workstation: eighth CPUs 

○ server: twelve CPUs server

● Experiments:
○ Single-core

■ Different duration

■ Different workload

○ Multi-core

● Running in parallel with cyclictest

● Note: The goal of the experiments is to 

demonstrate the tool, not to define worst values.
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Experiments

Single-core experiments
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Experiments

Multicore experiments
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tada!

Conclusions
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For more information 

about this paper, like 

source code, other 

comments, Q&A, check its 

companion page!

● The PREEMPT_RT preemption model is deterministic, and 

the scheduling latency is bounded.

● The approach presented in this paper opens the door for a 

new set of real-time analysis for Linux;
○ The analytical interpretation of Linux thread model developed 

in this paper untight the Linux complexity, enabling the 

reasoning at a more sophisticated level.

● Even though rtsl finds higher scheduling latency values, 

they are still low enough to justify Linux as RTOS on the 

current scenarios.

● rtsl is practical, and resolves many problems of cyclictest.
○ E.g., it can be used to point to the root causes of the latency;

○ But still can, and should, be improved:

■ Both with code, and other analysis.
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Red Hat is the world’s leading provider of enterprise 

open source software solutions. Award-winning 

support, training, and consulting services make 

Red Hat a trusted adviser to the Fortune 500. 

Thank you

31


