
Demystifying The Real-Time Linux Scheduling Latency - 32nd Euromicro Conference on Real-Time Systems - ECRTS’20

Daniel Bristot de Oliveira, Daniel Casini, Rômulo Silva de Oliveira and Tommaso Cucinotta
Principal Software Engineer

Demystifying the Real-Time 
Linux Scheduling Latency

1



Demystifying The Real-Time Linux Scheduling Latency - 32nd Euromicro Conference on Real-Time Systems - ECRTS’20

Real-Time Linux

Introduction

2



Demystifying The Real-Time Linux Scheduling Latency - 32nd Euromicro Conference on Real-Time Systems - ECRTS’20

“Real-Time” Linux

Introduction

3



Demystifying The Real-Time Linux Scheduling Latency - 32nd Euromicro Conference on Real-Time Systems - ECRTS’20

Why “real-time” Linux?

Real-Time Linux vs Real-Time theory

4

Experimental vs Analytical 



Demystifying The Real-Time Linux Scheduling Latency - 32nd Euromicro Conference on Real-Time Systems - ECRTS’20

Why “real-time” Linux?

Real-Time Linux vs Real-Time theory

5

Real-time analysis

● Based on the timing description of the system

● Capture all behaviors

● Precisely define the worst cases

● But depends on a precise definition of the 

system



Demystifying The Real-Time Linux Scheduling Latency - 32nd Euromicro Conference on Real-Time Systems - ECRTS’20

Why “real-time” Linux?

Real-Time Linux vs Real-Time theory

6

Linux approach

● Linux was adapted to become a RTOS

● PREEMPT_RT: De facto standard 

● Evaluated (mainly) with cyclictest

● Cyclictest:

○ Practical: lightweight and out-of-the-box

○ It is a “black-box” test

○ No demonstration 

○ Does not provide evidence of “root-cause” 



Demystifying The Real-Time Linux Scheduling Latency - 32nd Euromicro Conference on Real-Time Systems - ECRTS’20

Why don’t we apply RT 
analysis on Linux?

Why “Real-time” Linux?

7



Demystifying The Real-Time Linux Scheduling Latency - 32nd Euromicro Conference on Real-Time Systems - ECRTS’20

Linux is complex

Why “Real-time” Linux?

- Lots of contexts

- Lots of hacks

- Lots of information

- Fast pacing

- ...



Demystifying The Real-Time Linux Scheduling Latency - 32nd Euromicro Conference on Real-Time Systems - ECRTS’20

The PREEMPT_RT thread model

A way out.

9

It defines the specifications of threads synchronization:



Demystifying The Real-Time Linux Scheduling Latency - 32nd Euromicro Conference on Real-Time Systems - ECRTS’20

Demystifying the Real-Time Linux Scheduling Latency

10

Approach

Formal specification Measurement and analysisScheduling latency bound



Demystifying The Real-Time Linux Scheduling Latency - 32nd Euromicro Conference on Real-Time Systems - ECRTS’20

Formal Specification

From formal specification to synchronization rules

11

Formally backed natural language arguments

● Generators

○ Basic/Independent behavior

○ e.g., irq_disable/enable, scheduler call

● Translated into a set of operations

● Specifications

○ Relations among generators

○ e.g., necessary conditions to call the scheduler

● Translated into a set of synchronization rules



Demystifying The Real-Time Linux Scheduling Latency - 32nd Euromicro Conference on Real-Time Systems - ECRTS’20

Scheduling latency bound

Scheduling latency definition

12

From the first necessary 

condition to set need 

resched, to the the last 

action after the 

scheduling, which is 

enabling preemption after 

the return from 

__schedule().

The scheduling latency experienced by an arbitrary thread τ is:

● the longest time elapsed between the time A in which any job of τ 

becomes ready and with the highest priority,

● and the time F in which the scheduler returns and allows τ to execute 

its code.



Demystifying The Real-Time Linux Scheduling Latency - 32nd Euromicro Conference on Real-Time Systems - ECRTS’20

Scheduling latency bound

Interference and blocking

13

The scheduling latency in 

this paper refers to the 

delay between the 

notification of a new 

highest priority thread, to 

point in which this thread 

starts running its own 

code.

The highest priority thread 

can belong to any 

scheduler: the analysis is 

scheduler independent.

The scheduling latency is caused by:

● Blocking from the current (and so lower) priority 

thread;

● Including scheduling.

● Interference from IRQs and NMI.



Demystifying The Real-Time Linux Scheduling Latency - 32nd Euromicro Conference on Real-Time Systems - ECRTS’20

Blocking bound

Blocking bound

14

From the specification that bounds the block to a timeline



Demystifying The Real-Time Linux Scheduling Latency - 32nd Euromicro Conference on Real-Time Systems - ECRTS’20

Blocking bound

Timeline and cases

15

All possible cases



Demystifying The Real-Time Linux Scheduling Latency - 32nd Euromicro Conference on Real-Time Systems - ECRTS’20

Blocking bound

Blocking variables

16

In the model, the 

preemption control is 

specialized into two 

different operations: to 

postpone the scheduler 

(the most known 

behavior) or to protect the 

execution of the 

__schedule() function from 

recursion.

● DPOID: preemption or interrupts disabled to 

postpone the scheduler;

● DPAIE: preemption and interrupts enabled, as a 

transient state from poid to psd; when scheduling 

a new highest priority thread.

● DPSD: preemption disable to schedule;

● DST: delay caused by the scheduling tail; the “non 

return” point in which a new arrived task will have to 

wait for the current scheduling operation to finish 

before scheduling.



Demystifying The Real-Time Linux Scheduling Latency - 32nd Euromicro Conference on Real-Time Systems - ECRTS’20

Rtsl toolking

Timeline and cases

17

Variables in the the timeline



Demystifying The Real-Time Linux Scheduling Latency - 32nd Euromicro Conference on Real-Time Systems - ECRTS’20

Interference bound

Timeline and cases

18

IRQ and NMI interference



Demystifying The Real-Time Linux Scheduling Latency - 32nd Euromicro Conference on Real-Time Systems - ECRTS’20

Scheduling latency bound

And the scheduling latency bounds to:

19

The bound considers all 

possible cases. Note that 

the Latency L is present in 

both sides of the equation.

So, L is bounded by the 

least positive value 

fulfilling the equation (like 

on RTA).

L = max(DST, DPOID) + DPAIE + DPSD + INMI(L) + IIRQ(L)



Demystifying The Real-Time Linux Scheduling Latency - 32nd Euromicro Conference on Real-Time Systems - ECRTS’20

Interrupts characterization

Interrupts are workload dependent

20

This topic was heavily 

discussed at the Real-time 

Micro Conference (inside 

Linux Plumbers) in 2019, 

more info here:

● Instead of proposing “the best” interrupt 

characterization, the rtsl reports the scheduling 

latency based on some well-known 

characterizations:
○ No interrupt

○ Worst single interrupt

○ Single occurence of all interrupts

○ Sporadic 

○ Sliding window (Author’s preferred)

○ Sliding window with oWCET 



Demystifying The Real-Time Linux Scheduling Latency - 32nd Euromicro Conference on Real-Time Systems - ECRTS’20

rt_sched_latency toolkit

A practical scheduling latency estimation tool

21

Method and challenges 

● Based on the latency bound

● The latency bound is based on the model

● The model is based on tracing of events

○ but high frequency events

■ hundreds MB/sec/CPU

● Challenges:

○ To minimize the (runtime) overhead 

○ Work out-of-the-box



Demystifying The Real-Time Linux Scheduling Latency - 32nd Euromicro Conference on Real-Time Systems - ECRTS’20

22

A toolkit

Based on perf

Works in two phases:

- The record mode 
saves the trace data;

- The report mode 
process the trace 
and does the 
analysis.

rt_sched_latency (rtsl)



Demystifying The Real-Time Linux Scheduling Latency - 32nd Euromicro Conference on Real-Time Systems - ECRTS’20

rt_sched_latency toolkit

record phase

23

Low overhead trace recording

● Filters the high frequency trace

○ Doing in-kernel processing

● For blocking variables:

○ Reports only the discover of new max values 

● For IRQ and NMI:

○ Reports one event for each occurrence

● Discounts the interference:

○ e.g., IRQ interference on a poid



Demystifying The Real-Time Linux Scheduling Latency - 32nd Euromicro Conference on Real-Time Systems - ECRTS’20

rt_sched_latency toolkit

report phase

24

Low overhead trace recording

● After the capture, analyzes the trace.

○ All in user-space.

● Most of the analysis is done in python

○ Easy to extend

● Two outputs:

○ Textual: good for debug

○ Chart: good comparisons (and papers :-))

● Does a per-cpu scheduling latency analysis

○ Using different IRQ/NMI characterization...



Demystifying The Real-Time Linux Scheduling Latency - 32nd Euromicro Conference on Real-Time Systems - ECRTS’20

rt_sched_latency toolkit

rtsl report output

25

Textual output



Demystifying The Real-Time Linux Scheduling Latency - 32nd Euromicro Conference on Real-Time Systems - ECRTS’20

rt_sched_latency toolkit

rtsl report output

26

Chart output



Demystifying The Real-Time Linux Scheduling Latency - 32nd Euromicro Conference on Real-Time Systems - ECRTS’20

Experiments

Experiments

27

The experiments passed 

by the artifact evaluation!● Scheduling latency measurements on two systems:
○ workstation: eighth CPUs 

○ server: twelve CPUs server

● Experiments:
○ Single-core

■ Different duration

■ Different workload

○ Multi-core

● Running in parallel with cyclictest

● Note: The goal of the experiments is to 

demonstrate the tool, not to define worst values.



Demystifying The Real-Time Linux Scheduling Latency - 32nd Euromicro Conference on Real-Time Systems - ECRTS’20

Experiments

Single-core experiments

28



Demystifying The Real-Time Linux Scheduling Latency - 32nd Euromicro Conference on Real-Time Systems - ECRTS’20

Experiments

Multicore experiments

29



Demystifying The Real-Time Linux Scheduling Latency - 32nd Euromicro Conference on Real-Time Systems - ECRTS’20

tada!

Conclusions

30

For more information 

about this paper, like 

source code, other 

comments, Q&A, check its 

companion page!

● The PREEMPT_RT preemption model is deterministic, and 

the scheduling latency is bounded.

● The approach presented in this paper opens the door for a 

new set of real-time analysis for Linux;
○ The analytical interpretation of Linux thread model developed 

in this paper untight the Linux complexity, enabling the 

reasoning at a more sophisticated level.

● Even though rtsl finds higher scheduling latency values, 

they are still low enough to justify Linux as RTOS on the 

current scenarios.

● rtsl is practical, and resolves many problems of cyclictest.
○ E.g., it can be used to point to the root causes of the latency;

○ But still can, and should, be improved:

■ Both with code, and other analysis.



Demystifying The Real-Time Linux Scheduling Latency - 32nd Euromicro Conference on Real-Time Systems - ECRTS’20

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Red Hat is the world’s leading provider of enterprise 

open source software solutions. Award-winning 

support, training, and consulting services make 

Red Hat a trusted adviser to the Fortune 500. 

Thank you

31


