UNIVERSIDADE FEDERAL

pJ
Sant Anna DE SANTA CATARINA

School of Advanced Studies — Pisa

e‘ Red Hat
Enterprise Linux

Demystitying the Real-Time
Linux Scheduling Latency

Daniel Bristot de Oliveira, Daniel Casini, Rdmulo Silva de Oliveira and Tommaso Cucinotta
Principal Software Engineer

Demystifying The Real-Time Linux Scheduling Latency - 32"¢ Euromicro Conference on Real-Time Systems - ECRTS"20

Introduction

Demystifying The Real-Time Linux Scheduling Latency - 32"¢ Euromicro Conference on Real-Time Systems - ECRTS"20

Introduction

Demystifying The Real-Time Linux Scheduling Latency - 32"¢ Euromicro Conference on Real-Time Systems - ECRTS"20

Why “real-time” Linux?

Real-Time Linux vs Real-Time theory

Experimental vs Analytical

C

Demystifying The Real-Time Linux Scheduling Latency - 32" Euromicro Conference on Real-Time Systems - ECRTS'20

Why “real-time” Linux?

Real-Time Linux vs Real-Time theory

Real-time analysis

L, L

e Based on the timing description of the system

e Capture all behaviors
e Precisely define the worst cases
e But depends on a precise definition of the

system

Demystifying The Real-Time Linux Scheduling Latency - 32" Euromicro Conference on Real-Time Systems - ECRTS20

Why “real-time” Linux?

Real-Time Linux vs Real-Time theory

Linux approach

e Linux was adapted to become a RTOS
e PREEMPT_RT: De facto standard

e Evaluated (mainly) with cyclictest

e Cyclictest:

o Practical: lightweight and out-of-the-box
o ltisa“black-box” test
o No demonstration

o Does not provide evidence of “root-cause”

‘ RedHat
Demystifying The Real-Time Linux Scheduling Latency - 32" Euromicro Conference on Real-Time Systems - ECRTS'20

Why “Real-time” Linux?

Why don't we apply RT
analysis on Linux?

Demystifying The Real-Time Linux Scheduling Latency - 32"¢ Euromicro Conference on Real-Time Systems - ECRTS"20

Why “Real-time” Linux?

Linux is complex

- Lots of contexts
- Lots of hacks
- Lots of information

- Fast pacing

RedHat
Demystifying The Real-Time Linux Scheduling Latency - 32" Euromicro Conference on Real-Time Systems - ECRTS'20

A way out.

The PREEMPT_RT th

Journal of Systems Architecture

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/sysarc

A thread synchronization model for the PREEMPT RT Linux kernel)

Daniel B. de Oliveira®™“*, Romulo S. de Oliveira”, Tommaso Cucinotta®

2 RHEL Platform/Real-time Team, Red Hat, Inc., Pisa, Italy

b Dep. of Systems

©RETIS Lab, Scuola Superiore Sant’Anna, Pisa, Italy

spolis, Brazil

ARTICLE

INFO

ABSTRACT

Keywords:

Real-time computing
Operating systems
Linux kernel
Automata

Software verification
Synchronization

This article proposes an automata-based model for describing and validating sequences of kernel events in Linux
PREEMPT _RT and how they influence the timeline of threads’ execution, comprising preemption control, inter-
rupt handling and control, scheduling and locking. This article also presents an extension of the Linux tracing
framework that enables the tracing of kernel events to verify the consistency of the kernel execution compared to
the event sequences that are legal according to the formal model. This enables cross-checking of a kernel behavior
against the formalized one, and in case of i i , it pinp ible areas of improvement of the kernel,
useful for regression testing. Indeed, we describe in details three problems in the kernel revealed by using the
proposed technique, along with a short summary on how we reported and proposed fixes to the Linux kernel
community. As an example of the usage of the model, the analysis of the events involved in the activation of
the highest priority thread is presented, describing the delays occurred in this operation in the same granularity
used by kernel developers. This illustrates how it is possible to take advantage of the model for analyzing the
preemption model of Linux.

read model

It defines the specifications of threads synchronization:

sched_switch_in
sched_switch_in_o
sched_switch_suspend
sched_switch_preempt
sched_switch_out_o
sched_switch_blocking

schedule_entry

schedule_exit

Figure 22: S08 Switch while scheduling.

schedule_entry
schedule_exit

preempt_disable_sched

preempt_enable_sched

Figure 23: 503 Scheduler called with preemption dis-

abled.

Demystifying The Real-Time Linux Scheduling Latency - 32"¢ Euromicro Conference on Real-Time Systems - ECRTS"20

schedule_entry
schedule_exit

Figure 20: S05 Scheduler called with interrupts en-
abled.

sched_switch_in local_irq_enable

_enable_sched

local_irg_disable
preempt_disable_sched

sched_switch_blocking -
Tocal_irq_disable
preempt_disable_sched
local_irg_enable
@ preempt_enable_sched

Figure 21: S07 Switch with interrupts and preempt
disabled.

Demystifying the Real-Time Linux Scheduling Latency

Formal specification

10

Approach

Scheduling latency bound

LiF

< maz(Dsr, Dporo) + Dpasm + Dpgsn.

Proof. The lemma follows by noting that -,
= exclusive and cover all the possibie s o
set_need_resched, to the time imstast i whih «
by Definition 1), and the right-hasd side of B
right-hand sides of Equations 2 3 & st
L

Theorem 8 summarizes the results desid &

» Theorem 8. The scheduling lutency sapemnund
the least positive value that fulills the fullwing

L = maz(Dsr, Dpoin) + Drass + Drsn %

Demystifying The Real-Time Linux Scheduling Latency - 32" Euromicro Conference on Real-Time Systems - ECRTS20

Measurement and analysis

e

1
z
:
|
i

Latency in

o338 EREE]

.38838EEEE

Latency in

Formal Specification

From formal specification to synchronization rules

Formally backed natural language arguments

L L

n

Generators
o Basic/Independent behavior
o e.g.,irg_disable/enable, scheduler call

Translated into a set of operations

Specifications
o Relations among generators
o e.g., necessary conditions to call the scheduler

Translated into a set of synchronization rules

‘ Red Hat
Demystifying The Real-Time Linux Scheduling Latency - 32" Euromicro Conference on Real-Time Systems - ECRTS20

Scheduling latency bound

Scheduling latency definition

The scheduling latency experienced by an arbitrary thread T is:

e the longest time elapsed between the time A in which any job of T
becomes ready and with the highest priority,
e and the time F in which the scheduler returns and allows T to execute

its code.

12

Demystifying The Real-Time Linux Scheduling Latency - 32" Euromicro Conference on Real-Time Systems - ECRTS'20

From the first necessary
condition to set need
resched, to the the last
action after the

scheduling, which is

enabling preemption after

the return from
__schedule().

Red Hat

Scheduling latency bound

Interference and blocking The scheduling latency in

this paper refers to the
delay between the
notification of a new
The scheduling latency is caused by: MIEIIESE IS Baee, e
point in which this thread

starts running its own
e Blocking from the current (and so lower) priority

thread:

code.

The highest priority thread

e Including scheduling. can belong to any

scheduler: the analysis is

e Interference from IRQs and NMI. scheduler independent.

RedHat
Demystifying The Real-Time Linux Scheduling Latency - 32" Euromicro Conference on Real-Time Systems - ECRTS'20

Blocking bound

Blocking bound

From the specification that bounds the block to a timeline

N

IRQ disable

Preempt disable

Demystifying The Real-Time Linux Scheduling Latency - 32"¢ Euromicro Conference on Real-Time Systems - ECRTS"20

t IRQ enable —> tIRQ disable — EV3
Sieetibel 3z Preempt enable from sched—> EV7
Preempt disable to sched —> EV1 Schedule return—> EV6

Preempt enable IRQ enable —> EV5
Context switch—> EV4

Blocking bound

Timeline and cases

All possible cases

> ji-afii-b

Preempt enable from sched—> EV7

—Schedule return—> EV6

[N
[XRRRKY
(X505
%% %tetetet

KX RXXRK XX
B8

IRQ enable—> EV5
Context switch—> EV4

Schedule call—> EV2 thQ disable — EV3

Preempt disable to sched—> EV1

Preempt enable

— IRQ enable

A

2
o
2
393
%
2
X

2
2
2

ble

“IRQ disable

A
isa

1Preempt d

15

Demystifying The Real-Time Linux Scheduling Latency - 32" Euromicro Conference on Real-Time Systems - ECRTS20

Blocking bound

Blocking variables

e Dpoip: preemption or interrupts disabled to

postpone the scheduler; In the model, the

e Dpraie: preemption and interrupts enabled, as a preemption control is

. .) specialized into two
transient state from poid to psd; when scheduling

different operations: to

a new highest priority thread. postpone the scheduler

e Dpsb: preemption disable to schedule; (the most known
e Dsrt: delay caused by the scheduling tail; the “non behavior) or to protect the

return” point in which a new arrived task will have to execution of the

wait for the current scheduling operation to finish —seiseiiz() unelen e

i recursion.
before scheduling.

RedHat
Demystifying The Real-Time Linux Scheduling Latency - 32" Euromicro Conference on Real-Time Systems - ECRTS'20

Rtsl toolking

Preempt enable from sched—> EV7

Dpsd

—Schedule return—> EV6

—IRQ enable—> EV5
Context switch—> EV4

A

ble — EV3

Isa

Schedule call—> EV2 thQ d
Preempt disable to sched—> EV1

Preempt enable

Timeline and cases

Variables in the the timeline

Dpoi

Dpaie

— IRQ enable

A

LIRQ disable
ble

A
isa

1Preempt d

17

Demystifying The Real-Time Linux Scheduling Latency - 32" Euromicro Conference on Real-Time Systems - ECRTS20

Interference bound

Timeline and cases

IRQ and NMl interference

|| Thread | | Scheduling (Thread) || HardiR@ [NMi Preemption disabled \\\Y IRQ disabled

JNmi (L)

(L) |

Y,

N

A Dpoid

Dpsd

Dpaie | Dst

A
LIRG) disable

Preempt disable

A
— IRQ enable

Schedule call—> EvV2 —IRQdisable —> EV3
Preempt disable to sched—> EV1

Preempt enable

Demystifying The Real-Time Linux Scheduling Latency - 32" Euromicro Conference on Real-Time Systems - ECRTS20

R
>

LPreempt enable from sched—> EV7
—Schedule return—> EV6

~IRQ enable—> EV5

Context switch—> EV4

Scheduling latency bound

And the scheduling latency bounds to:

The bound considers all
possible cases. Note that
the Latency L is present in

both sides of the equation.

So, L is bounded by the

L = max(DsT, DpoiD) + DPAIE + Dpsp + INMI(L) + I'RO(L) e

fulfilling the equation (like
on RTA).

Red Hat
Demystifying The Real-Time Linux Scheduling Latency - 32"¢ Euromicro Conference on Real-Time Systems - ECRTS"20

Interrupts characterization

Interrupts are workload dependent

e Instead of proposing “the best” interrupt
characterization, the rtsl reports the scheduling
latency based on some well-known

characterizations:
o No interrupt
o Worst single interrupt
o Single occurence of all interrupts
o Sporadic
o Sliding window (Author’s preferred)
o Sliding window with oWCET

20

Demystifying The Real-Time Linux Scheduling Latency - 32" Euromicro Conference on Real-Time Systems - ECRTS'20

This topic was heavily

discussed at the Real-time
Micro Conference (inside
Linux Plumbers) in 2019,

more info here:

Red Hat

21

rt_sched_latency toolkit

A practical scheduling latency estimation tool

Method and challenges

e Based on the latency bound
e The latency bound is based on the model

e The modelis based on tracing of events
o but high frequency events
m hundreds MB/sec/CPU
e Challenges:

To minimize the (runtime) overhead

Work out-of-the-box

Demystifying The Real-Time Linux Scheduling Latency - 32" Euromicro Conference on Real-Time Systems - ECRTS'20

A toolkit

rt_sched_latency (rtsl)

p
P Y perf script
Kernel 'ag?,g‘e?}/ record rtsl
L perf
" e buffer
-+ I
c <
'S >
Q. > >
() >
5] = =
o >
-+ .
L \)

22

perf.data

perf script
report rtsl

Demystifying The Real-Time Linux Scheduling Latency - 32" Euromicro Conference on Real-Time Systems - ECRTS'20

Based on perf

Works in two phases:

The record mode
saves the trace data;

The report mode
process the trace
and does the
analysis.

Red Hat

rt_sched_latency toolkit

record phase

Low overhead trace recording

L L

e Filters the high frequency trace

o Doingin-kernel processing

Kernel e Forblocking variables:

o Reports only the discover of new max values

perf.data e ForIRQ and NMI:

tracepoints

o Reports one event for each occurrence

e Discounts the interference:

23

o e.g., IRQ interference on a poid

Demystifying The Real-Time Linux Scheduling Latency - 32" Euromicro Conference on Real-Time Systems - ECRTS20

rt_sched_latency toolkit

>
5
=,
<
2
wn

perf script
report rtsl

perf.data

Chart

24

Demystifying The Real-Time Linux Scheduling Latency - 32" Euromicro Conference on Real-Time Systems - ECRTS'20

report phase

Low overhead trace recording

C

After the capture, analyzes the trace.
o Allin user-space.
Most of the analysis is done in python
Easy to extend
Two outputs:
Textual: good for debug
Chart: good comparisons (and papers :-))
Does a per-cpu scheduling latency analysis

Using different IRQ/NMI characterization...

& RedHat

rt_sched_latency toolkit

rtsl report output

Textual output

Interference Free Latency:
paie is lower than 1 us -> neglectable S
; : continuing....
latency = max(poid, dst) + paie + psd & iine windous
42212 = max(22510, 19312) + 0 + 19702 & ;
, Window: 42212
Cyclictest: NMI : 0
Latency = 27000 with Cyclictest 33: 16914
No Interrupts: 35: 14588
Sporizzi?cy = 42212 with No Interrupts 936 50728
INT: OWCET OMIAT . 226 3299
Window: 97741
WAL 9 0 236: 21029 <- new!
33: 16914 257130 Witdews 98(.)42 '
35: 12913 1843 <- oWCET > oMIAT) ;
236: 20728 1558 <- OWCET > oMIAT Converged:
546 3299 1910391 Latency = 98042 with Sliding Window
Did not converge.

25

& RedHat

Demystifying The Real-Time Linux Scheduling Latency - 32"¢ Euromicro Conference on Real-Time Systems - ECRTS"20

26

rt_sched_latency toolkit

rtsl report output

Chart output

B Cyclictest W No Interrupts W Worst Single Interrupt m Single (Worst) of Each Interrupt
400

B Sliding Window

Sliding Window with oWCET

350 A
300 A
250 A

croseconds

= 200 -

in m

Demystifying The Real-Time Linux Scheduling Latency - 32" Euromicro Conference on Real-Time Systems - ECRTS20

0 4 8

Experiments

-------- ra TL @l

[
N N interrupts BN Worst Singie e g —
e —— g

o

1.a) ldle
o
[

2.a) 15 min.

26 Workstation expet jments SINg

B IS
D~+h svstellls 3385

27

Experiments

Scheduling latency measurements on two systems:
o workstation: eighth CPUs

o server: twelve CPUs server
Experiments:
o Single-core
m Different duration
m Different workload

o Multi-core

Running in parallel with cyclictest
Note: The goal of the experiments is to

demonstrate the tool, not to define worst values.

Demystifying The Real-Time Linux Scheduling Latency - 32" Euromicro Conference on Real-Time Systems - ECRTS'20

The experiments passed

by the artifact evaluation!

Red Hat

28

Experiments

Single-core experiments

I Cyclictest B No Interrupts B Worst Single Interrupt

I Single (Worst) of Each Interrupt

B Sliding Window

Sliding Window with oWCET

,, 180 180 180
T 160 4 160 - 160 -
[
o
S 1401 140 - 140 -
g 120 120 1 120
-2 1001 100 1 100

80 A 80

60 - 60 -

40 - 40 -

20 A 20

0- - 0- .
1.a) Idle 1.b) CPU Intensive 1.c) I/O Intensive
180 180 180

(7]
'g 160 - 160 - f 160 f
g 140 - 140 1 467 140 801
£ 1201 120 120
.
Y 100 100 - 100 -

80 A 80 -

60 - 60 -

40 - 40

20+ 20

0- 0-

2.a) 15 min.

2.b) 60 min.

Demystifying The Real-Time Linux Scheduling Latency - 32" Euromicro Conference on Real-Time Systems - ECRTS20

2.c) 180 min.

Experiments

Multicore experiments

I Cyclictest B No Interrupts B Worst Single Interrupt B Single (Worst) of Each Interrupt B Sliding Window Sliding Window with oWCET

300 300 300

2944

N

wn

o
1

250 A 250 A

200 - 200 - 200 -
150 - 150 - 150 -
100 - 100 - 100 -
50 I I IIIIIIIIlIlll“l 50 I IIIIIIIIIIIIIIII 50
0- 0- 04

3.a) Workstation Idle 3.b) Workstation CPU Intensive 3.c) Workstation I/O Intensive

8350 - |
C

S 3001 1900
(]

Latency in microseconds

0' LN B I B N BN B B N B B |
0 4 8 0 4 8 0 4 8 0 4 8 0 4 8 0 4 8

4.a) Server 1/O Intensive

29

Demystifying The Real-Time Linux Scheduling Latency - 32" Euromicro Conference on Real-Time Systems - ECRTS20

tada!

1. Idle

2.a) 15 min.

26 Workstat jon experiments: S5%

n I8
D~+h qusiellld 235

30

Conclusions

The PREEMPT_RT preemption model is deterministic, and
the scheduling latency is bounded.
The approach presented in this paper opens the door for a

new set of real-time analysis for Linux;

o The analytical interpretation of Linux thread model developed
in this paper untight the Linux complexity, enabling the

reasoning at a more sophisticated level.
Even though rtsl finds higher scheduling latency values,
they are still low enough to justify Linux as RTOS on the
current scenarios.

rtsl is practical, and resolves many problems of cyclictest.

o E.g., it can be used to point to the root causes of the latency;
o But still can, and should, be improved:

m Both with code, and other analysis.

Demystifying The Real-Time Linux Scheduling Latency - 32" Euromicro Conference on Real-Time Systems - ECRTS'20

For more information

about this paper, like

source code, other
comments, Q&A, check its

companion page!

Red Hat

Thankyou ..o

Red Hat is the world’s leading provider of enterprise B youtube.com/user/RedHatVideos

open source software solutions. Award-winning

- : , f facebook.com/redhatinc
support, training, and consulting services make

Red Hat a trusted adviser to the Fortune 500.
’ twitter.com/RedHat

Demystifying The Real-Time Linux Scheduling Latency - 32"¢ Euromicro Conference on Real-Time Systems - ECRTS"20

